Math, asked by jayceecastaneda87, 8 hours ago

Solve the Homogeneous differential equation xydx - (x² + 3y²) dy = 0​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{xy \: dx -  \left(  {x}^{2} + 3 {y}^{2}  \right) \: dy = 0}

 \tt{ \implies \: xy \: dx  =   \left(  {x}^{2} + 3 {y}^{2}  \right) \: dy}

 \tt{ \implies  \dfrac{dx }{dy} =    \dfrac{  {x}^{2} + 3 {y}^{2}}{xy}  }

Put \sf{y=vx}

\implies\sf{\dfrac{dy}{dx}=v+x\,\dfrac{dv}{dx}}

 \tt{ \implies  \dfrac{dy}{dx} =    \dfrac{xy}{  {x}^{2} + 3 {y}^{2}}  }

 \tt{ \implies v + x \dfrac{dv}{dx} =    \dfrac{v \: x^{2} }{  {x}^{2} + 3 {v}^{2}  \cdot{x}^{2} }  }

 \tt{ \implies v + x \dfrac{dv}{dx} =    \dfrac{v  }{  1+ 3 {v}^{2}  }  }

 \tt{ \implies  x \dfrac{dv}{dx} =    \dfrac{v  }{  1+ 3 {v}^{2}  }   - v}

 \tt{ \implies  x \dfrac{dv}{dx} =    \dfrac{v  - v - 3 {v}^{3}  }{  1+ 3 {v}^{2}  }   }

 \tt{ \implies  x \dfrac{dv}{dx} =    \dfrac{ - 3 {v}^{3}  }{  1+ 3 {v}^{2}  }   }

 \tt{ \implies  \dfrac{1 + 3v^{2} }{3 {v}^{3} } \: dv =   -   \dfrac {dx }{  x }   }

Integrating both sides, we get,

 \displaystyle \tt{ \implies   \int\dfrac{1 + 3v^{2} }{3 {v}^{3} } \: dv =   -   \int \dfrac {dx }{  x }   }

 \displaystyle \tt{ \implies   \int\dfrac{1 }{3 {v}^{3} } \: dv +  \int \dfrac{3 {v}^{2} }{3 {v}^{3} }  \: dv =   -   \int \dfrac {dx }{  x }   }

 \displaystyle \tt{  \implies \dfrac{1}{3}   \int\dfrac{dv}{ {v}^{3} }  +  \int \dfrac{dv }{v}   =   -   \int \dfrac {dx }{  x }   }

 \displaystyle \tt{  \implies  - \dfrac{1}{3}  \cdot  \dfrac{1}{2 {v}^{2} }  +  \ln | v |  =   -   \ln |   x |   + c }

 \displaystyle \tt{  \implies  -  \dfrac{1}{6 {v}^{2} }  +  \ln | v |  =   -   \ln |   x |   + C }

 \displaystyle \tt{  \implies  -  \dfrac{ {x}^{2} }{6 {y}^{2} }  +  \ln \left |  \dfrac{y}{x}   \right|  =   -   \ln |   x |   + C }

 \displaystyle \tt{  \implies  -  \dfrac{ {x}^{2} }{6 {y}^{2} }  +  \ln  |  y  |  -  \ln |x|  =   -   \ln |   x |   + C }

 \displaystyle \tt{  \implies  -  \dfrac{ {x}^{2} }{6 {y}^{2} }  +  \ln  |  y  |  =   C }

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given homogeneous differential equation is

\rm :\longmapsto\:xydx - ( {x}^{2} +  {3y}^{2})dy = 0

\rm :\longmapsto\:xydx  =  ( {x}^{2} +  {3y}^{2})dy

\rm :\longmapsto\:\dfrac{dx}{dy}  = \dfrac{ {x}^{2} +  {3y}^{2} }{xy}

To solve this Homogeneous differential equation, we substitute

\red{\rm :\longmapsto\:x = vy}

So, above differential equation reduces to

\rm :\longmapsto\:\dfrac{d}{dy}(vy)  = \dfrac{ {(vy)}^{2} +  {3y}^{2} }{(vy)y}

\rm :\longmapsto\:y\dfrac{d}{dy} v + v\dfrac{d}{dy} y= \dfrac{  {v}^{2} {y}^{2}   +  {3y}^{2} }{ {vy}^{2} }

\rm :\longmapsto\:y\dfrac{dv}{dy} + v= \dfrac{  {y}^{2} ({v}^{2}   +  3) }{ {vy}^{2} }

\rm :\longmapsto\:y\dfrac{dv}{dy} + v= \dfrac{{v}^{2}   +  3}{v}

\rm :\longmapsto\:y\dfrac{dv}{dy}= \dfrac{{v}^{2}   +  3}{v}  - v

\rm :\longmapsto\:y\dfrac{dv}{dy}= \dfrac{{v}^{2}+  3 -  {v}^{2} }{v}

\rm :\longmapsto\:y\dfrac{dv}{dy}= \dfrac{3}{v}

\rm :\longmapsto\:vdv=3 \dfrac{dy}{y}

\rm :\longmapsto\:\displaystyle \int \:vdv=3 \displaystyle \int \:\dfrac{dy}{y}

\rm :\longmapsto\:\dfrac{ {v}^{2} }{2}  = 3logy + c

\rm :\longmapsto\:\dfrac{{x}^{2}}{2 {y}^{2} }  = 3logy + c

\rm :\longmapsto\:\dfrac{{x}^{2}}{{y}^{2} }  = 6logy + 2c

\rm :\longmapsto\:\dfrac{{x}^{2}}{{y}^{2} }  = 6logy +d \:  \:  \: (where \: d = 2c)

Similar questions