Math, asked by ps9476137, 8 months ago

Solve the in-equation: 12 + 1 5/6 x ≤ 5 + 3x and x ∈ R.​

Answers

Answered by amankumaraman11
1

 \tt12 + 1 \frac{5}{6} x \leqslant 5 + 3x \\  \\  \tt12 - 5 - 3x +  1\frac{5}{6}  x\leqslant 5  + 3x - 5 - 3x \\  \\  \tt7 - 3x +  \frac{11}{6} x \leqslant 0 \\  \\  \tt7 -  \frac{18x - 11x}{6}  \leqslant 0 \\  \\  \tt   7 - \frac{7x}{6}  \leqslant 0 \\  \\  \tt \frac{42 - 7x}{6}  \leqslant 0 \\  \\   \tt\bigg( \frac{42 - 7x}{ \cancel6}  \bigg) \times  \cancel6 \leqslant 0 \times 6 \\  \\  \tt42 - 7x \leqslant 0 \\ 42 \:  \cancel{ - 7x} \cancel{ + 7x} \leqslant 0 + 7x \\ 42 \leqslant 7x \\  \\  \tt \frac{42}{7}  \leqslant  \frac{ \cancel7x}{ \cancel7}  \\  \\   \tt \red{6 \leqslant x} \\

Similar questions