Math, asked by adityak4m6le007, 3 months ago

Solve the inequality for real x.
 \frac{(2x - 1)}{3} \geqslant \frac{(3x - 2)}{4} - \frac{(2 - x)}{5}

Answers

Answered by TMarvel
2

Answer:

 \frac{(2x - 1)}{3}  \geqslant  \frac{(3x - 2)}{4}  -  \frac{(2 - x)}{5}  \\   \frac{(2x - 1)}{3}  \geqslant  \frac{15x - 10 - (8 - 4x)}{20 }  \\ \frac{(2x - 1)}{3}  \geqslant  \frac{15x - 10 -  8  +  4x}{20 }  \\  \frac{(2x - 1)}{3}  \geqslant  \frac{(19x - 18)}{20} \\ 20(2x - 1) \geqslant 3(19x - 18) \\ 40x - 20 \geqslant 57x - 54 \\ 54 - 20 \geqslant 57x - 40x \\ 34 \geqslant 17x \\  \frac{34}{17}  \geqslant x \\ x \leqslant 2

Answered by ISHWARI082421
2

Answer:AnswerNumber of atoms in close packaging = 0.5 mol1 has 6.022×10 23 particlesSo thatNumber of close-packed particles=0.5×6.022×10 23 =3.011×10 23 Number of tetrahedral voids = 2 × number of atoms in close packagingPlug the values we getNumber of tetrahedral voids =2×3.011×10 23 =6.022×10 23 Number of octahedral voids = number of atoms in close packagingSo thatNumber of octahedral voids =3.011×10 23 Total number of voids = Tetrahedral void + octahedral void =6.022×10 23 +3.011×10 23 =9.03×10 23

Step-by-step explanation:

SN.AP AAHES KY RE

Similar questions