Math, asked by aggarwalansh10, 1 day ago

Solve the inequality graphically x + 2y ≤10, x + y ≥ 1, x - y ≤0 , x ≥ 0 ,y ≥ 0.

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given inequations are

\rm :\longmapsto\:x + 2y \leqslant 10

\rm :\longmapsto\:x + y \geqslant 1

\rm :\longmapsto\:x - y \leqslant 0

\rm :\longmapsto\:x \geqslant 0

\rm :\longmapsto\:y \geqslant 0

Consider,

\rm :\longmapsto\:x + 2y \leqslant 10

Let we plot the line x + 2y = 10

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 5 \\ \\ \sf 10 & \sf 0 \end{array}} \\ \end{gathered}

Let we check the origin.

\red{\rm :\longmapsto\:0 + 0 \leqslant 10}

\red{\rm :\longmapsto\:0 \leqslant 10 \: which \: is \: true}

So, the half plane is shaded towards the (0, 0).

Now, Consider

\rm :\longmapsto\:x + y \geqslant 1

Now, we plot the line x + y = 1

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 0 \end{array}} \\ \end{gathered}

Let we check the origin.

\rm :\longmapsto\:0 + 0 \geqslant 1

\rm :\longmapsto\:0 \geqslant 1 \: which \: is \: false

So, the half plane is shaded away from the origin.

Now, Consider

\rm :\longmapsto\:x - y \leqslant 0

Let we plot the line x - y = 0

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 1 \end{array}} \\ \end{gathered}

Let we check the point (1, 0)

So,

\rm :\longmapsto\:1 - 0 \leqslant 0

\rm :\longmapsto\:1\leqslant 0 \: which \: is \: false.

So, the half plane is shaded away from (1, 0)

[ See the attachment ]

Attachments:
Answered by amitnrw
0

Given :  x + 2y ≤10, x + y ≥ 1, x - y ≤0 , x ≥ 0 ,y ≥ 0.

To Find : Solve the inequality graphically

Solution:

 x + 2y ≤10

Draw a line x + 2y = 10

then check ( 0 , 0)

0 + 0 < 10  hence region towards origin to the line  x + 2y = 10

Similarly doing for others

Required solution area is ABCD in the graph

Learn More:

Solve the following inequality : [tex]displaystyle{dfrac{1-sqrt{21-4x ...

brainly.in/question/12643551

Solve the inequality |X

brainly.in/question/12424683

Attachments:
Similar questions