Math, asked by habibmrashid, 3 months ago

solve the inequality
  3\leqslant 4 - 2x < 7

Answers

Answered by Karamjotkaur
31

Answer:

3 \leqslant 4 - 2x < 7 \\ add \:  - 4 \: on \: all \: sides \\ 3 - 4 \leqslant 4 - 4 - 2x < 7 - 4 \\  - 1 \leqslant  - 2x < 7 \\ taking \: ( - )sign \: < inequality \: change >  \\ 1 \geqslant 2x >  - 7 \\ divide \: 2 \: on \: all \: sides \\  \frac{1}{2}  \geqslant x >  \frac{7}{2}  \\

Answered by telex
192

Question :-

solve the inequality :-

 \sf 3\leqslant 4 - 2x < 7

___________________

Solution :-

Given Information :-

 \sf3 \leqslant 4 - 2x < 7

To Find :-

Solve the given inequality.

Calculation :-

:  \implies  \sf3  \leqslant 4 - 2x < 7

:  \implies  \sf3 - 4 \leqslant 2x < 7

:  \implies   \sf- 1 \leqslant 2x < 7

:  \implies \sf 2x < 7 + 1

:  \implies \sf 2x < 8

:  \implies \sf x  <   \frac{8}{2}

Cancelling, so as to get the lowest terms,

:  \implies  \sf \: x  <   \frac{ \cancel{8} \:  \:  \:  \tiny{4}}{ \cancel{2} \:  \:  \:  \tiny{1}}  =  \frac{4}{1}  = 4

:  \implies \sf x < 4

 \therefore  \bf solution \: set =  {3,2,1,0,- 1,- 2,- 3,...}

___________________

Final Answer :-

Solution Set = {3, 2, 1, 0, -1, -2, -3, ...}

____________________

Similar questions