Math, asked by khushi15686, 18 days ago

Solve the inequality

 \frac{x - 4}{x + 2}  \leqslant 2

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: \dfrac{x - 4}{x + 2} \leqslant 2 \\

Let's first define the domain of the above.

\rm \: x \:  \ne \:  -  \: 2 \\

So,

\rm \: \dfrac{x - 4}{x + 2} \leqslant 2 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{x - 4}{x + 2} - 2 \leqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{x - 4 - 2(x + 2)}{x + 2} \leqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{x - 4 - 2x - 4}{x + 2} \leqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{ - x  - 8}{x + 2} \leqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{ -( x + 8)}{x + 2} \leqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{ x + 8}{x + 2} \geqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \: \dfrac{(x + 8)(x + 2)}{(x + 2)^{2} } \geqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm \:(x + 8)(x + 2) \geqslant 0 \:  \:  \: and \: x \:  \ne \:  -  \: 2 \\

\rm\implies \:( -  \infty , \:  - 8] \:  \cup \: ( - 2,  \infty ) \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION :-

If a and b are two real positive numbers such that a < b, then

\rm \: (x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \\

\rm \: (x - a)(x - b)  \leqslant  0 \:  \: \rm\implies \:a  \leqslant  x  \leqslant  b \\

\rm \: (x - a)(x - b) &gt; 0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt; b \\

\rm \: (x - a)(x - b)  \geqslant  0 \:  \: \rm\implies \:x  \leqslant  a \:  \: or \:  \: x  \geqslant  b \\

\rm \:  |x|  &lt; a \:  \: \rm\implies \: - a &lt; x &lt; a \\

\rm \:  |x| \leqslant  a \:  \: \rm\implies \: - a  \leqslant  x  \leqslant  a \\

\rm \:  |x| &gt; a \:  \: \rm\implies \:x &lt;  - a \:  \: or \:  \: x &gt; a \\

\rm \:  |x| \geqslant a \:  \: \rm\implies \:x \leqslant   - a \:  \: or \:  \: x  \geqslant  a \\

Attachments:
Answered by talpadadilip417
1

Step-by-step explanation:

→Replace the inequality sign with an equal sign, so that we can solve it like a normal equation.

 \sf \leadsto\dfrac{x-4}{x+2}=2

→Multiply both sides by x+2.

⇝x-4=2(x+2)

→Subtract x from both sides.

⇝-4=2x+4-x

⇝x=−8

→Also note that x is undefined at -2.

x\ne−2

→From the values of xx above, we have these 3 intervals to test.

x≤−8

−8≤x≤−2

x≥−2

→Pick a test point for each interval.

For the interval x≤−8:

Let's pick x=−9. Then, \tt\frac{-9-4}{-9+2}\le 2

After simplifying, we get 1.857143≤2, which is true.

Keep this interval..

For the interval −8≤x≤−2:

Let's pick x=-7x=−7. Then, \tt\frac{-7-4}{-7+2}\le 2

After simplifying, we get 2.2≤2, which is false.

Drop this interval..

For the interval x≥−2:

Let's pick x=0x=0. Then, \tt\frac{0-4}{0+2}\le 2

After simplifying, we get −2≤2, which is true.

Keep this interval..

→Therefore,

•x≤−8,x≥−2

→Notice the equation contains x+2 in the denominator. Since any denominator must not equal zero, the domain is restricted to \sf x+2\ne 0. Solving for x, we have:

\tt x\ne -2

→ Add the domain restrictions.

x≤−8,x>−2

Similar questions