Solve the inequality.
Answers
ANSWER:
Determine the define range of the question
And rewrite the inequality
We get
|x² - 4x| + 3/x² + |x - 5| ≥ 3⁰
Using , a⁰ = 1
→ |x² - 4x| + 3/x² + |x - 5| ≥ 1
→ (|x² - 4x| + 3/x² + |x - 5|) - 1 ≥ 0
→ |x² - 4x| + 3 - (x² + |x - 5|)/x² + |x - 5| ≥ 0
→ |x² - 4x| + 3 - x² - |x - 5|/x² + |x - 5| ≥ 0
→ |x² - 4x| + 3 - x² - |x - 5| ≥ 0
Seperating into possible cases
x² - 4x + 3 - x² - (x - 5)≥ 0 , x² - 4x ≥ 0 , x - 5 ≥ 0
- (x² - 4x) + 3 - x² - (x - 5)≥ 0 , x² - 4x < 0 , x - 5≥ 0
x² - 4x + 3 - x² - [ - (x - 5)]≥ 0 , x² - 4x≥ 0 , x - 5< 0
- (x² - 4x) + 3 - x² - [ - (x - 5)] ≥ 0 , x² - 4x < 0 ,x- 5<0
Solving the inequalities , we get
Find the intersection
x ≤ 8/5 , x belongs to [5 , + ∞]
x belongs to [3 - √73/4 , 3 + √73/4] , x belong to∅
x ≤ - 2/3 , x belongs to ( -∞ , 0] U [ 4 ,5)
x belongs to [½ , 2] , x belongs to (0 , 4)
Find the intersection
x belongs to ∅
x belongs to ∅
x belongs to ( - ∞ , - 2/3]
x belongs to [½ , 2]
Find the union
x belongs to ( - ∞ , - ⅔ ] U [½ , 2]
Anyways great & tough question
Given : log₃ ( |x² - 4x | + 3 )/(x² + | x - 5 | ) ≥ 0
To find : value of x
Solution:
log₃ ( |x² - 4x | + 3 )/(x² + | x - 5 | ) ≥ 0
=> | x² - 4x| + 3 ≥ x² + | x - 5 | as 3⁰ = 1
x² - 4x = 0 x(x - 4) = 0
x = 0 , x = 4
x - 5 = 0
So we get cases
x < 0 0 < x < 4 , 4 < x < 5 & x > 5
| x | = x if x ≥ 0 & -x if x < 0
Case 1 x < 0
x² - 4x + 3 ≥ x² + 5 - x
=> -3x ≥ 2
=> x ≤ -2/3
Case 2 0 < x < 4
4x - x² + 3 ≥ x² + 5 - x
=> 2x² - 5x + 2 ≤ 0
=> 2x² - 4x -x + 2 ≤ 0
=> (2x - 1)(x - 2 ) ≤ 0
1/2 ≤ x ≤ 2
Case 3 : 4 < x < 5
x² - 4x + 3 ≥ x² + 5 - x
already done above x ≤ -2/3
hence no solution for 4 < x < 5
case 4 : x > 5
x² - 4x + 3 ≥ x² + x - 5
=> -5x ≥ - 8
=> x ≤ 8/5
hence no solution here
x ≤ -2/3 , 1/2 ≤ x ≤ 2
Learn more:
Solve the inequality |X
https://brainly.in/question/12424683
Solve the given inequality for real x: [3x/5 + 4]/2 ≥ (x-6)/3
https://brainly.in/question/17174531