Solve the inequality using WAVY CURVE METHOD ONLY
(x² + 3x + 1) (x² + 3x + 3) ≥ 5
Answers
Given
(x²+3x+1)(x²+3x–3) ≥ 5
★Solution★
For making the given expression suitable for application of the wavy curve method, we must simplify it first.
On opening the brackets:
⇒(x⁴)+(3x³+3x³)+(9x²+x²–3x²)–6x–3 ≥ 5
⇒x⁴+6x³+7x²–6x–3 ≥ 5
Now, on subtracting 5 from both sides:
⇒x⁴+6x³+7x²–6x–8 ≥ 0
# Writing 6x³, 7x², & –6x as:
⇒x⁴+6x³+7x²–6x–8 ≥ 0
⇒x⁴+2x³+4x³+8x²–x²–2x–4x–8 ≥ 0
⇒x³(x+2)+4x²(x+2)–x(x+2)–4(x+2) ≥ 0
⇒(x+2)(x³+4x²–x–4) ≥ 0
# Writing 4x², & –x as:
⇒(x+2)(x³+4x²–x–4) ≥ 0
⇒(x+2)(x²(x+4)–1(x+4)) ≥ 0
⇒(x+2)(x²–1)(x+4) ≥ 0
[ ∵ a²–b²=(a–b)(a+b) ]
⇒(x+2)(x+4)(x–1)(x+1) ≥ 0
Now,
The roots are : x= –4, –2, –1, & 1
Plotting the roots on number line, and checking sign at one of the interval, except at the roots;
E.g. The value of (x+2)(x+4)(x–1)(x+1) at x=2, is 72>0(+ve). Now, changing the signs alternatively, we get:
+ve –ve +ve –ve +ve
–∞‹___,______,______,______,___›∞
–4 –2 –1 1
‡‡Answer‡‡
Therefore,
______________________________
x ∈ (–∞, –4 ] ∪ [ –2, –1 ] ∪ [ 1, ∞ )
______________________________