Math, asked by BrainlyHelper, 1 year ago

Solve the inequality -

x + 1 /( x - 1 )² < 1

Answers

Answered by abhi178
4

x +\frac{1}{(x-1)^2} &lt; 1 \\  \\ x +  \frac{1}{ {(x - 1)}^{2} }  - 1 &lt; 0 \\   \\  \frac{x {(x - 1)}^{2}  + 1 -  {(x - 1)}^{2} }{ {(x - 1)}^{2} }    &lt; 0 \\  \\  \frac{ {(x - 1)}^{3}  + 1}{ {(x - 1)}^{2} }  &lt; 0 \\  \\  \frac{(x - 1 + 1)( {x}^{2}  - 2x + 1 + 1 - x + 1) }{ {(x - 1)}^{2} }  &lt; 0 \\  \\  \frac{x( {x}^{2}  - 3x + 3) }{ {(x - 1)}^{2} }  &lt; 0
now, for (x² - 3x + 3) > 0 for all x ∈ R
because a = 1 > 0 and D = b² - 4ac = 3²-4.3<0

now,
\frac{x(+ve)}{(x-1)^2} &lt; 0 \\  \\  \frac{x}{ {(x - 1)}^{2} }  &lt; 0

but we also know, (x -1)² > 0 for x ∈ R
hence,
 \frac{x}{ + ve}  &lt; 0 \\  \\ x &lt; 0
hence, x ∈ ( -∞ , 0)
Answered by Anonymous
12
★ INEQUALITIES ★

Hence , x ∈ ( - ∞ , 0 ) ∪ ( 3 , + ∞ )

★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Attachments:
Similar questions