Solve the inequality |X| -1 / |X|-2 >=0, X belongs to R and X not equal to +-2
Answers
Answered by
15
Answer:
X < - 2 , -1 ≤ X ≤ 1 , X > 2
Step-by-step explanation:
|X| - 1 / |X| - 2 >= 0
|X| - 1 = 0
or |X| - 1 & |X| - 2 > 0
or if |X| - 1 & |X| - 2 < 0
Case 1 : |X| - 1 = 0
=> |X| = 1
=> X = ± 1
Case 2 :
|X| - 1 & |X| - 2 > 0
=> |X| - 1 > 0 => |X| > 1 => X > 1 or X < - 1
also |X| - 2 > 0 => |X| > 2 => X > 2 or X < - 2
from Both X > 2 or X < - 2
Case 3 :
|X| - 1 & |X| - 2 < 0
=> |X| - 1 < 0 => |X| < 1 => X < 1 & X > - 1 = > -1 < X < 1
=> |X| - 2 < 0 => |X| < 2 => X < 2 & X > - 2 = > -2 < X < 2
from Both -1 < X < 1
also X = ± 1
so -1 ≤ X ≤ 1
Hence X < - 2 , -1 ≤ X ≤ 1 , X > 2
Similar questions