Math, asked by samosa462, 14 days ago

Solve the inequation:
2x-3 < x+1 ≤ 4x+7 , if x is integer.

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:2x - 3 &lt; x + 1 \leqslant 4x + 7

Consider,

\rm :\longmapsto\:2x - 3 &lt; x + 1

\rm :\longmapsto\:2x - x &lt; 3 + 1

\rm :\longmapsto\:x &lt; 4

\bf\implies \:x \:  \in \: ( -  \infty ,4) -  -  - (1)

Now, Consider

\rm :\longmapsto\: x + 1 \leqslant 4x + 7

\rm :\longmapsto\: x - 4x \leqslant  7 - 1

\rm :\longmapsto\: - 3x \leqslant  6

\bf\implies \:x \geqslant  - 2

\bf\implies \:x \:  \in \: [ - 2, \infty ) -  -  - (2)

From equation (1) and (2), we concluded that

\bf\implies \:x \:  \in \: [ - 2,4)

It is given that

\bf :\longmapsto\:x \:  \in \: Z

\bf\implies \:x \:  =  \:  \{ - 2, \:  - 1, \: 0, \: 1, \: 2, \: 3 \}

Additional Information :-

\boxed{ \bf{ \: x &gt; y\bf\implies \: - x &lt;  - y}}

\boxed{ \bf{ \: x  &lt;  y\bf\implies \: - x  &gt;   - y}}

\boxed{ \bf{ \: x   \geqslant   y\bf\implies \: - x   \leqslant    - y}}

\boxed{ \bf{ \: x   \leqslant   y\bf\implies \: - x   \geqslant    - y}}

\boxed{ \bf{ \:  |x| &lt; y\bf\implies \: - y &lt; x &lt; y}}

\boxed{ \bf{ \:  |x|  \leqslant  y\bf\implies \: - y  \leqslant  x  \leqslant  y}}

\boxed{ \bf{ \:  |x| &gt; y\bf\implies \:x &lt;  - y \:  \: or \:  \: x &gt; y}}

\boxed{ \bf{ \:  |x|  \geqslant  y\bf\implies \:x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y}}

Similar questions