Math, asked by lataee01, 2 months ago

Solve the inequation and graph the solution set on the number
line : – 8 1⁄2 < - 1⁄2 - 4x ≤ 7 1⁄2 , x Ɛ I

Answers

Answered by mayanksingh1239
4

Answer:

7 network gospel l of halal

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: - 8 \: \dfrac{1}{2}  &lt;  - \dfrac{1}{2}  - 4x \leqslant 7 \: \dfrac{1}{2}

\rm :\longmapsto\: -  \: \dfrac{17}{2}  &lt;  - \dfrac{(1 + 8x)}{2} \leqslant  \: \dfrac{15}{2}

☆ On multiply by - 2 each term, we get

\rm :\longmapsto\:17 &gt; 1 + 8x \geqslant  - 15

☆ Subtracting 1 from each term

\rm :\longmapsto\:17  - 1 \: &gt; 1 + 8x - 1 \:  \geqslant  - 15 - 1

\rm :\longmapsto\:16 \: &gt; 8x  \:  \geqslant  - 16

☆ On dividing by 8 each term, we get

\rm :\longmapsto\:2 \: &gt; x  \:  \geqslant  - 2

\bf\implies \: - 2 \:  \leqslant x \:  &lt;  \: 2

\bf\implies \:x \in \: [- 2, 2)

Additional Information :-

 \boxed{ \sf \: x &gt; y \implies \:  - x &lt;  - y}

 \boxed{ \sf \: x  \geqslant  y \implies \:  - x  \leqslant   - y}

 \boxed{ \sf \: x  &lt;  y \implies \:  - x  &gt;   - y}

 \boxed{ \sf \: x  \leqslant  y \implies \:  - x  \geqslant   - y}

 \boxed{ \sf \:  - x  \leqslant  y \implies \:  x  \geqslant   - y}

Attachments:
Similar questions