Math, asked by madhav5245, 10 hours ago

Solve the inequation

 {3}^{x + 2}  >  {( \frac{1}{9}) }^{ \frac{1}{x} }

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given inequation is

\rm \:  {3}^{x + 2} >  {\bigg(\dfrac{1}{9} \bigg) }^{\dfrac{1}{x} }  \\

can be rewritten as

\rm \:  {3}^{x + 2} >  {\bigg(\dfrac{1}{ {3}^{2} } \bigg) }^{\dfrac{1}{x} }  \\

\rm \:  {3}^{x + 2} >  {\bigg( {3}^{ - 2}  \bigg) }^{\dfrac{1}{x} }  \\

\rm \:  {3}^{x + 2} >  {\bigg(3\bigg) }^{\dfrac{ - 2}{x} }  \\

\rm\implies \:x + 2 >  - \dfrac{2}{x}

\rm \: x + 2 + \dfrac{2}{x} > 0

\rm \: \dfrac{ {x}^{2} + 2x +  2}{x} > 0

Now, x² + 2x + 2 is a quadratic polynomial such that coefficient of x² = 1 > 0 and Discriminant, D = 4 - 8 = - 4 < 0

So, we know, in a quadratic expression ax² + bx + c, if a > 0 and D < 0, then ax² + bx + c > 0

\rm\implies \: {x}^{2} + 2x + 2 &gt; 0

Thus,

\rm\implies \:\dfrac{1}{x} &gt; 0

\rm\implies \:x &gt; 0

\rm\implies \:x  \in \: (0, \:  \infty )

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  |x| &lt; y \:  \: \rm\implies \: - y &lt; x &lt; y \: }} \\

\boxed{\tt{  |x| \leqslant  y \:  \: \rm\implies \: - y  \leqslant  x  \leqslant  y \: }} \\

\boxed{\tt{  |x - z| \leqslant  y \:  \: \rm\implies \:z - y  \leqslant  x  \leqslant z +  y \: }} \\

\boxed{\tt{  |x - z|  &lt;   y \:  \: \rm\implies \:z - y &lt; x &lt;  z +  y \: }} \\

\boxed{\tt{  |x| &gt; y \:  \: \rm\implies \:x &lt;  - y \:  \: or \:  \: x &gt; y \: }} \\

\boxed{\tt{  |x|  \geqslant  y \:  \: \rm\implies \:x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y \: }} \\

Answered by ariyakaushik092
0

Step-by-step explanation:

Solution−

Given inequation is

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(\dfrac{1}{9} \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(

9

1

)

x

1

can be rewritten as

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(\dfrac{1}{ {3}^{2} } \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(

3

2

1

)

x

1

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg( {3}^{ - 2} \bigg) }^{\dfrac{1}{x} } \\ \end{gathered}

3

x+2

>(3

−2

)

x

1

\begin{gathered}\rm \: {3}^{x + 2} > {\bigg(3\bigg) }^{\dfrac{ - 2}{x} } \\ \end{gathered}

3

x+2

>(3)

x

−2

\rm\implies \:x + 2 > - \dfrac{2}{x}⟹x+2>−

x

2

\rm \: x + 2 + \dfrac{2}{x} > 0x+2+

x

2

>0

\rm \: \dfrac{ {x}^{2} + 2x + 2}{x} > 0

x

x

2

+2x+2

>0

Now, x² + 2x + 2 is a quadratic polynomial such that coefficient of x² = 1 > 0 and Discriminant, D = 4 - 8 = - 4 < 0

So, we know, in a quadratic expression ax² + bx + c, if a > 0 and D < 0, then ax² + bx + c > 0

\rm\implies \: {x}^{2} + 2x + 2 > 0⟹x

2

+2x+2>0

Thus,

\rm\implies \:\dfrac{1}{x} > 0⟹

x

1

>0

\rm\implies \:x > 0⟹x>0

\rm\implies \:x \in \: (0, \: \infty )⟹x∈(0,∞)

Similar questions