Math, asked by Anonymous, 1 month ago

Solve the infinite radicals.

{x =  \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{... \infty} } } } }

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{ -  -  - \infty} } } }

Let start with

\rm :\longmapsto\:3

can be rewritten as

\rm \:  =  \: \sqrt{ {3}^{2} }

\rm \:  =  \: \sqrt{9}

\rm \:  =  \: \sqrt{1 + 8}

\rm \:  =  \: \sqrt{1 + 2 \times 4}

\rm \:  =  \: \sqrt{1 + 2 \sqrt{16} }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 15} }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3 \times 5} }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{25} } }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{1 + 24} } }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{1 + 4 \times 6} } }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{1 + 4  \sqrt{36} } } }

\rm \:  =  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{1 + 4  \sqrt{ -  -  -  \infty } } } }

and this process goes on.

Hence,

\rm \: \boxed{ \tt{ \:  \: \sqrt{1 + 2 \sqrt{1 + 3  \sqrt{1 + 4  \sqrt{ -  -  -  \infty } } } }  \:  = 3 \:  \: }}

Similar questions