Math, asked by Anonymous, 1 month ago

Solve the integral of :-
 \displaystyle\int \sqrt{x +  \sqrt{x +  \sqrt{x +  \sqrt{... } } } } \:  \:  d

Answers

Answered by anindyaadhikari13
64

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given integral.

\displaystyle\rm= \int \sqrt{x +  \sqrt{x +  \sqrt{x + ... \infty } } } \: dx

Let us assume that:

\rm: \longmapsto y=\sqrt{x+ \sqrt{x +  \sqrt{x + ... \infty } } }

We can also write it as:

\rm: \longmapsto y=\sqrt{x+y }

Squaring both sides, we get:

\rm: \longmapsto  {y}^{2} =x+y

\rm: \longmapsto  {y}^{2} - y - x = 0

Using quadratic formula, we get:

\rm: \longmapsto y =  \dfrac{1 \pm \sqrt{ {( - 1)}^{2}  - 4(1)( - x)} }{2}

\rm: \longmapsto y =  \dfrac{1 \pm \sqrt{1 + 4x} }{2}

But y cannot be negative. Therefore:

\rm: \longmapsto y =  \dfrac{1 +  \sqrt{1 + 4x} }{2}

Now, we got the value of y. Lets integrate.

\displaystyle\rm= \int y\: dx

\displaystyle\rm= \int  \dfrac{1 +  \sqrt{4x + 1} }{2} \: dx

\displaystyle\rm=  \dfrac{1}{2} \int  1 +  \sqrt{4x + 1}  \: dx

\displaystyle\rm=  \dfrac{1}{2} \bigg[ \int  1 \: dx + \int  \sqrt{4x + 1}  \: dx \bigg]

\displaystyle\rm=  \dfrac{1}{2} \bigg[ \int  {x}^{0}  \: dx + \int  \sqrt{4x + 1}  \: dx \bigg]

As we know that:

 \displaystyle \rm : \longmapsto \int {x}^{n} \:  dx =  \dfrac{ {x}^{n + 1} }{n + 1} ,n \neq - 1

We get:

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+ \int  \sqrt{4x + 1}  \: dx \bigg]

Let us assume that:

 \rm : \longmapsto u = 4x + 1

 \rm : \longmapsto du = 4 \: dx

 \rm : \longmapsto dx =  \dfrac{1}{4}du

Therefore, the integral becomes:

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+ \int \dfrac{1}{4} \sqrt{u}   \: du \bigg]

We know that:

 \displaystyle \rm : \longmapsto \int {x}^{n} \:  dx =  \dfrac{ {x}^{n + 1} }{n + 1} ,n \neq - 1

We get:

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+  \dfrac{1}{4} \dfrac{ {u}^{^{3}/_{2}} }{ ^{3}/_{2}} \bigg]

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+  \dfrac{1}{4} \dfrac{2 {u}^{^{3}/_{2}} }{3} \bigg]

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+  \dfrac{1}{2} \dfrac{{u}^{^{3}/_{2}} }{3} \bigg]

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+ \dfrac{{u}^{^{3}/_{2}} }{6} \bigg]

Substitute back u = 4x + 1, we get:

\displaystyle\rm=  \dfrac{1}{2} \bigg[x+ \dfrac{{(4x + 1)}^{^{3}/_{2}} }{6} \bigg]

\displaystyle\rm=  \dfrac{1}{2} \times  \dfrac{6x + (4x + 1) \sqrt{4x + 1} }{6}

\displaystyle\rm= \dfrac{6x + (4x + 1) \sqrt{4x + 1} }{12}

Add the constant of integration:

\displaystyle\rm= \dfrac{6x + (4x + 1) \sqrt{4x + 1} }{12} + C

Therefore:

\displaystyle\rm: \longmapsto\int \sqrt{x +  \sqrt{x +  \sqrt{x + ... \infty } } } \: dx  \rm= \dfrac{6x + (4x + 1) \sqrt{4x + 1} }{12} + C

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf kx+C\\ \\ \sf sin(x)&\sf-cos(x)+C\\ \\ \sf cos(x)&\sf sin(x)+C\\ \\ \sf{sec}^{2}(x)&\sf tan(x)+C\\ \\ \sf{cosec}^{2}(x)&\sf-cot(x)+C\\ \\ \sf sec(x)\  tan(x)&\sf sec(x)+C\\ \\ \sf cosec(x)\ cot(x)&\sf-cosec(x)+C\\ \\ \sf tan(x)&\sf log(sec(x))+C\\ \\ \sf\dfrac{1}{x}&\sf log(x)+C\\ \\ \sf{e}^{x}&\sf{e}^{x}+C\\ \\ \sf x^{n},n\neq-1&\sf\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions