Math, asked by Anonymous, 1 month ago

Solve the integral:

 \displaystyle \rm\int\dfrac{x^{\frac{x}{ln\:x}}}{\sqrt{e^x}} dx

Answers

Answered by Anonymous
10

Given integral,

 \longrightarrow \small{\displaystyle \rm\int\dfrac{x^{\frac{x}{ln\:x}}}{\sqrt{e^x}} dx}

We know that,

  •  \boxed{\rm e^{\ln x} = x}

By using this, we get:

 \longrightarrow \small{\displaystyle \rm\int\dfrac{  ({e}^{ \ln x}{ )^{\frac{x}{ln\:x}}}}{\sqrt{e^x}} dx}

 \longrightarrow \small{\displaystyle \rm\int\dfrac{ {e}^{x} }{\sqrt{e^x}} dx}

 \longrightarrow \small{\displaystyle \rm\int\dfrac{ {e}^{x} }{e^ \frac{x}{2} } dx}

 \longrightarrow \small{\rm\int{e}^{x -  \frac{x}{2} }dx}

 \longrightarrow \small{\rm\int{e}^{ \frac{x}{2} }dx}

Now, substitute  \rm u = \dfrac{x}{2} \longrightarrow \dfrac{du}{dx} = \dfrac{1}{2}.

So,

\longrightarrow \small{\rm\int{e}^{ \frac{x}{2} }dx  \implies \int {e}^{u} 2 \: du}

\longrightarrow \small{\rm2 \int {e}^{u}  \: du}

\longrightarrow \small{\rm2  {e}^{u}  + C}

Substitute back  \rm u = \dfrac{x}{2}

\longrightarrow \small{\rm2 {e}^{ \frac{x}{2} }   + C}

\longrightarrow \small{\rm 2 \sqrt{ {e}^{x} } +C}

Therefore,

 \underline{ \boxed{ \small{\displaystyle \rm\int\dfrac{x^{\frac{x}{ln\:x}}}{\sqrt{e^x}} dx=  2 \sqrt{ {e}^{x} }+C}}}

Note :  \rm\int e^u du = e^u

Similar questions