Math, asked by Anonymous, 7 hours ago

Solve the integral:

\int \limits_0^ 1  \ln[\Gamma( x)]dx

Answers

Answered by kinzal
19

 \sf I = \int \limits_{0}^{1} ln [ \gamma (x) ] dx \\

 \longrightarrow Here, We can use identity : → \int \limits_{0}^{a} f(x) dx = \int \limits_{0}^{a} f(a - x) dx \\

So Use it in given Integral,

 \sf I = \int \limits_{0}^{1} ln [\gamma(1-x)] dx \\

 \sf 2I = \int \limits_{0}^{1} ln [\gamma (x)] dx + \int \limits_{0}^{1} ln [\gamma ( 1 - x )] dx     \\

 \sf 2l = \int \limits_{0}^{1} [\gamma (x) ] + ln [ \gamma (1 - x) ] dx \\

 \longrightarrow Now, we can here apply  \sf ln \: \: a + ln \: \: b = ln \: \: ab \\

 \sf 2I = \int \limits_{0}^{1} In [\gamma (x)] . \gamma (1 - x) dx \\

 \longrightarrow We know that,  \gamma (x) . \gamma (1 - x) = \frac{π}{sin(πx)} \\

 \sf 2I = \int \limits_{0}^{1} In \bigg[\frac{π}{sin(πx)}  \bigg]   dx \\

 \longrightarrow  \sf In \bigg( \frac{a}{b} = ln\: \: a - In \: \: b \\

 \sf 2I = \int \limits_0^1 In \: \: π \: \: dx - \int \limits_0^1 In [sin(πx)] dx \\

:⟹ πx = t

:⟹ πdx = dt

:⟹ x → 0 , t → 0

⟹ x → 1 , t → π

 \sf 2I = In \: \: π . x \bigg| _{0}^{1} - \int \limits_{0}^{π} In (sin \: t ) .\frac{dt}{π} \\

 \longrightarrow Use :  \sf → \int \limits_0^a f(t) dt = \int \limits_0^a f(x)dx \\

Hence,

 \sf 2I = In \: \: π - \frac{1}{π} \int \limits_0^π In (sin \: x ) dx \\

 \sf 2I = In \: π - \frac{1}{π} × 2 \int \limits_0^{\frac{π}{2}} In (sin \: x) dx \\

Now, focus on,  \sf \int \limits_0^{\frac{π}{2}} In (sin \: x) dx \\

 \sf → \frac{-π}{2} In \: 2 \\

So,

 \sf 2I = In \: π - \frac{2}{π} × \frac{-π}{2} In \: 2 \\

 \sf 2I = In \: π - \frac{\cancel{2}}{\cancel{π}} × \frac{-\cancel{π}}{\cancel{2}} In \: 2 \\

 \sf 2I = In \: π + In \: 2 \\

 \sf 2I = In (2π) \\

 \sf I = \frac{1}{2} In (2π) \\

 \underline{\boxed{\bf I = In (2π)^{\frac{1}{2}}}} \\

We can write it like ↓

 \underline{ \boxed{\bf I = In \sqrt{2π}}} \\

I hope it helps you...

Answered by IamIronMan0
16

Answer:

 \huge \orange{ \frac{1}{2}   \log(2\pi) }

Step-by-step explanation:

To solve this integral first you should know about

  \boxed{\purple {Euler \: reflection \: formula}} \\for \: 0 < x < 1 \\  \\  \Gamma(x) \Gamma(1- x) =  \frac{\pi}{ \sin(\pi x) }

Proof of this formula is very lengthy and tedious so just use it here .

Another property of integral which I will be using frequently is

   \int_{a} ^{b} f(x)dx =   \int_{a} ^{b} f(a + b - x)dx \\  \implies \:  \\  \\  \int_{0} ^{1} f(x)dx =  \int_{0} ^{1} f(1 - x)dx

Now take log both sides of Euler reflection formula

 log( \Gamma(x) \Gamma(1- x)) = log( \frac{\pi}{ \sin(\pi x) } ) \\  \\   \implies\\log(\Gamma(x)) +  log(\Gamma(1- x) )=   log( {\pi}) -  log( { \sin(\pi x) } )

Integrate both sides 0 to 1 ,

  \red{LHS} \\  \\    \int_{0} ^{1}  log(\Gamma(x))dx +    \int_{0} ^{1}  log(\Gamma(1- x) )dx \\  \\ integral \: property \\  =  \int_{0} ^{1}  log(\Gamma(x))dx +    \int_{0} ^{1}  log(\Gamma(1- (1 - x)) )dx \\  \\  =  \int_{0} ^{1}  log(\Gamma(x))dx +    \int_{0} ^{1}  log(\Gamma(x) )dx \\  \\  = 2 \int_{0} ^{1}  log(\Gamma(x))dx

Now

\red{RHS} \\

 \int  _{0} ^{1}  log( {\pi}) dx-   \int  _{0} ^{1}  log( { \sin(\pi x) } )dx \\  \: put \:   \: \pi x = t \\  =   log( {\pi}) -   \frac{1}{\pi}  \int  _{0} ^{\pi}  log( { \sin( t) } )dt \\

Let

I =  \int  _{0} ^{\pi}  log( { \sin( t) } )dt  \\  \\  =  \int  _{0} ^{\pi \over2}  log( { \sin( t) } )dt  +  \int  _{\pi \over2} ^{\pi}  log( { \sin( t) } )dt  \\   \\ replace \:  \: t \:  \: by \:  \: t -  \frac{\pi}{2}  \: in \: second \: term \\ \\  =  \int  _{0} ^{\pi \over2}  log( { \sin( t) } )dt  +  \int  _{0} ^{\pi \over2}  log( { \cos( t) } )dt  \\  \\  =   \int  _{0} ^{\pi \over2}  log( { \sin(t)  \cos( t) } )dt \\  \\  =  \int  _{0} ^{\pi \over2}  log( { 2\sin(t)  \cos( t) \over2 } )dt \\  \\  =  \int  _{0} ^{\pi \over2}  log( { \sin(2t)  } )dt -  \int  _{0} ^{\pi \over2} log(2)  dt \\   \\ replace \:  \: 2t \:  \: by \:  \: t \:  in \: first \: term\\ \\  = \frac{1}{2}   \int  _{0} ^{\pi}  log( { \sin(t)  } )dt  -  \frac{\pi}{2}  log(2)  \\  \\  \implies \\  \\ I =  \frac{I}{2}  -  \frac{\pi}{2}  log(2)  \\  \\  \implies \: I =  - \pi \:  log(2)

So RHS now become

 =  log(\pi)  -  \frac{1}{\pi} I \\  \\  =  log(\pi)  -  \frac{1}{\pi} ( - \pi \:  log(2) ) \\  \\  =  log(\pi)  -  log(2) \\  \\  =  log(2\pi)

Now finally

 LHS = RHS \\  \\   \implies \:  \\  \\ 2 \int_{0} ^{1}  log(\Gamma(x))dx =  log(2\pi)  \\  \\  \implies \:  \int_{0} ^{1}  log(\Gamma(x))dx =  \frac{1}{2}  log(2\pi)

Similar questions