Math, asked by Shubhendu8898, 1 year ago

Solve the Integral
\int{(\sin^{-1}x)^{2}} \ dx

Answers

Answered by prince5132
11

GIVEN:

 \implies \tt \:  \int \: ( \sin ^{ - 1} x) \: dx \:

TO FIND:

 \tt \: Integrate ..\:  \int \: (\sin^{ - 1} x) \: dx

SOLUTION:

\tt  :  \implies I =  \int  {({sin}^{ - 1} x)}^{2} x  \: dx. \\

Now, Substitute x = sin θ.

Differentiate with respect to ' x '

 \tt  :  \implies 1= cos (\theta) \frac{d \theta}{dx}

 \tt  :  \implies dx= cos (\theta) d \theta

 \tt   \therefore I =  \int { (\theta)}^{2}  \times cos (\theta )\:  d \theta \\

Now, Integration by part.

 \tt :  \implies \int (uv)dx = u \int v \: dx -  \int\Bigg[\dfrac{du}{dx} \times  \int v \: dx \Bigg]dx \\

So, that.

 \tt : \implies I =  {( \theta)}^{2}  \int cos( \theta)d \theta -   \int\Bigg[\dfrac{d { (\theta)}^{2} }{d \theta} \times  \int cos \: d \theta\Bigg]d \theta \\

 \tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-   \int((2 \theta)(sin \theta))d \theta \\

 \tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2 \int(\theta)(sin \theta)d \theta \\

\tt  Applying     again        by     part</p><p>\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2  \Bigg[] \: \int(\theta)(sin \theta)d \theta \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2  \Bigg[ \theta \{sin (\theta) -  \int \{ \frac{ d \theta}{d \theta} \times \int sin (\theta)d \theta \} \} ] \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2  \Bigg[ \theta (cos (\theta)) -  \int ( - cos (\theta))\Bigg] \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2  \Bigg[ \theta (cos (\theta)) + \int (  cos (\theta))\Bigg] \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta )-  2  \Bigg[ \theta ( - cos (\theta))  + sin (\theta)\Bigg] + c \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta ) +  2\theta (cos (\theta))   - 2 sin (\theta) + c \\

\tt : \implies I =  {( \theta)}^{2}   \times \sin( \theta ) +  2\theta  \sqrt{1 -  {sin}^{2} ( \theta)}    - 2 sin (\theta) + c \\

Now, Replace ( θ )

\tt  {I =   \{{ {sin}^{ - 1} x \}}^{2} (x) + 2\{{ {sin}^{ - 1} x \}} \times   \sqrt{1 - x ^{2} }   - 2x + c.}

Answered by BrainlyIAS
4

Answer

\tt \int (sin^{-1}x)^2dx      

Let x = sinθ                          

dx = cosθ dθ

\implies \tt \int (sin^{-1}(sin\theta))^2cos\theta d\theta\\\\\implies \tt \int \theta^2cos\theta d \theta\\\\

Now , Apply ILATE rule , we get ,

\bf So,u= \theta ^2,dv=cos\theta d \theta\\\\\implies \bf du=2\theta d \theta , \int dv=\int cos\theta d \theta\\\\\implies \bf du=2\theta d\theta , v=sin\theta

\implies \tt  \theta ^2.sin\theta-\int sin\theta .2\theta d \theta\\\\\implies \tt \theta^2.sin\theta - 2 \int \theta .sin \theta d\theta

Now once again apply ILATE rule , we get ,

\bf u =\theta , dv=sin\theta d \theta\\\\\implies \bf du=d \theta , v =-cos \theta

\implies \tt \theta^2.sin \theta - 2 [-\theta.cos \theta - \int -cos \theta d \theta]\\\\\implies \tt \theta^2.sin \theta +2 \theta cos \theta - 2sin \theta\\\\\implies \tt (sin^{-1}x)^2.x+2.sin^{-1}x.\sqrt{1-x^2}-2x+c

So ,

\bf {\blue{\underline{\int (sin^{-1}x)^2dx=(sin^{-1}x)^2.x+2.sin^{-1}x.\sqrt{1-x^2}-2x+c}}}

Similar questions