Math, asked by BendingReality, 9 months ago

Solve the integral to find the value of ( α - β ).

Attachments:

Answers

Answered by Anonymous
59

Question :

\sf\int\dfrac{dx}{(1+\sqrt{x})^{2010}}=2[\dfrac{1}{\alpha(1+\sqrt{x})^{\alpha}}-\dfrac{1}{\beta(1+\sqrt{x})^{\beta}}]+c

\sf{where\:\alpha,\beta>0}

Then find value of \sf\:(\alpha-\beta)

Solution :

We have,

\sf\int\dfrac{dx}{(1+\sqrt{x})^{2010}}=2[\dfrac{1}{\alpha(1+\sqrt{x})^{\alpha}}-\dfrac{1}{\beta(1+\sqrt{x})^{\beta}}]+c...(1)

Now , let's solve the problem by substitution method

\sf\:\dfrac{dx}{(1+\sqrt{x})^{2010}}

Let \sf(1+\sqrt{x})=v...(2)

Now , Differentiate it with respect to x ,then ;

\sf\dfrac{dv}{dx}=\dfrac{1}{2\sqrt{x}}

\sf\:dx=2\sqrt{x}\:dv

From (2)

\sf(1+\sqrt{x})=v

\sf\sqrt{x}=v-1

Thus,

\sf\int\dfrac{dx}{(1+\sqrt{x})^{2010}}

\sf\int\dfrac{1}{(v)^{2010}}\times2\sqrt{x}\:dv

\sf\int\dfrac{dx}{(v)^{2010}}\times2(v-1)dv

\sf\int2\times\dfrac{v-1}{v^{2010}}dv

\sf\:2\int\dfrac{v-1}{v^{2010}}dv

\sf\:2[\int\dfrac{v}{v^{2010}}dv-\int\dfrac{1}{v^{2010}}dv]

\sf\:2[\int\:v^{(1-2010)}dv-\int\:v^{(-2010)}dv]

\sf\:2[\int\:v^{-2009}dv-\int\:v^{-2010}dv]

\sf\pink{We\:Know\:that}

\rm\int\:x^n\:dx=\dfrac{x{}^{n+1}}{n+1}+c Then ,

\sf\:2[\int\:v^{-2009}dv-\int\:v^{-2010}dv]

\sf=2[\dfrac{v^{-2009+1}}{(-2009+1)}-\dfrac{v^{-2010+1}}{(-2010+1)}]+c

\sf=2[\dfrac{v^{-2008}}{-2008}-\dfrac{v^{-2009}}{(-2009)}]+c

\sf=2[\dfrac{1}{-2008v^{2008}}-\dfrac{1}{(-2009)v^{2009}}]+c

On Rearranging the terms

\sf=2[\dfrac{1}{2009v^{2009}}-\dfrac{1}{2008v^{2008}}]+c

\sf=2[\dfrac{1}{2009(1+\sqrt{x})^{2009}}-\dfrac{1}{2008(1+\sqrt{x})^{2008}}]+c...(3)

\sf\purple{Now\:,Compare\:(1)\:and\:(3)}

Then ,

\sf2[\dfrac{1}{2009(1+\sqrt{x})^{2009}}-\dfrac{1}{2008(1+\sqrt{x})^{2008}}]+c=2[\dfrac{1}{\alpha(1+\sqrt{x})^{\alpha}}-\dfrac{1}{\beta(1+\sqrt{x})^{\beta}}]+c

Thus,

\sf\alpha=2009

and \sf\beta=2008

Then ,\sf\alpha-\beta=2009-2008

\sf\blue{\alpha-\beta=1}

_____________________

\sf\green{More\:About\:the\:topic}

Integration by substitution :

The given integral \sf\int\:f(x)dx can be transformed into another by changing the independent variable x to t by substituting x = g(t)


BloomingBud: good
Anonymous: Thankies
Vamprixussa: Awesome ♥
Anonymous: Thanks
Anonymous: Perfect explanation :)
Anonymous: thankies
shadowsabers03: Great!
Anonymous: Thanks
Anonymous: Wellllll done !!
Anonymous: Thank you
Similar questions