Math, asked by linkanpatra2303, 2 months ago

solve the integration​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\displaystyle\int_0^1\sf  \:  {x}^{7} {(1 - x)}^{6} \: dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\sf  \:  {x}^{7} {(1 - x)}^{6} \: dx

We know the property, Beta function

\rm :\longmapsto\:B(m, n) \:  =  \: \displaystyle\int_0^1\sf  \:  {x}^{m - 1} {(1 - x)}^{n - 1} \: dx \: where \: m \: and \: n \:  > 0

So, using this property, the above integral can be rewritten as

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\sf  \:  {x}^{8 - 1} {(1 - x)}^{7 - 1} \: dx

\bf\implies \:I = B(8, 7)

We know,

\green{ \boxed{ \bf \: B(m, n)  = \dfrac{\Gamma \: m \: \Gamma \: n}{\Gamma \: (m + n)} }}

So, using this,

\rm :\longmapsto\:I = \dfrac{\Gamma \: 8 \: \Gamma \: 7}{\Gamma(8 + 7)}

We know,

\red{ \boxed{ \bf \: \Gamma \: n = (n - 1)! \:  \: if \: n \:  \in \: N}}

So, using this,

\rm :\longmapsto\:I \:  =  \: \dfrac{7! \:  \times  \: 6!}{14!}

\rm :\longmapsto\:I \:  =  \: \dfrac{7! \:  \times  \: 6 \times 5 \times 4 \times 3 \times 2}{14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7!}

\bf :\implies\:I = \dfrac{1}{24024}

Hence,

\bf :\longmapsto\:\displaystyle\int_0^1\bf  \:  {x}^{7} {(1 - x)}^{6} \: dx =  \dfrac{1}{24024}

Additional Information :-

\rm :\longmapsto\:B(m, n)  = B(n, m)  \: where \: m \: and \: n \:  > 0

\rm :\longmapsto\:B(m, n)  = \displaystyle\int_0^ \infty \sf \dfrac{ {x}^{m - 1} }{ {(1 + x)}^{m + n} } dx

\rm :\longmapsto\:\Gamma \: \dfrac{1}{2}  =  \sqrt{\pi}

\rm :\longmapsto\:\Gamma \: (1) = 1

\rm :\longmapsto\:\Gamma \: (x + 1) = x \: \Gamma \: (x)

Similar questions