Math, asked by devansh9257, 4 days ago

Solve the integration

 \int \:  {e}^{ {tan}^{ - 1} x}( \frac{1 + x +  {x}^{2} }{1 +  {x}^{2} }) \: dx

Answers

Answered by Anonymous
38

Answer:

I = e^(tan-¹x) x + c

Step-by-step explanation:

I = ∫ e^(tan-¹x) (1 + x + x²/ 1 + x²) dx

Take tan-¹ x = t ----> (1)

Now differentiate the above equation to obtain the following :

(1/1 + x²)dx = dt -----> (2)

Now we can substitute (2) in the original question by re arranging the terms a bit and hence having a simpler integrand.

Using (1),

I = ∫ e^(t) (1 + x + x²/1 + x²) dx

Now,for some ease,

I = ∫ e^(t) (1 + x + x² × [1/1 + x²]) dx

See the term in the square bracket, it's the same as (2),so we can write dt there instead of that complicated term,

I = ∫ e^(t) (1 + x + x²) dt

Also, using (1), tan-¹x = t => x = tant,

I = ∫ e^(t) (1 + tant + tan²t) dt

I = ∫ e^(t) ( tant + 1 + tan²t) dt

Globally it is known that, 1 + tan²t = sec²t,

I = ∫ e^(t) (tant + sec²t) dt ---> (A)

Now, if you have practice for some nice hours, you will surely identify what's happening here. The property if you have some function inside the int with e^(x)•f(x) and also the derivative of f(x) i.e f'(x) is present beside it (something like this ∫ e^(x) [ f(x) + f'(x)])) then the direct answer is : e^(x) f(x) + c.

So,if you observe (A), you can clearly see that the derivative of tant is present with it i.e sec²t,so :

I = e^(t) tant + c

Now just resubstitute all the initial variables and powers,

I = e^(tan-¹x) x + c

You can solve it with a different approach as well,but it will just consume your time,so you must be knowing all these properties, they can be really handy at times.

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  {e}^{ {tan}^{ - 1} x}\bigg(\dfrac{1 + x +  {x}^{2} }{1 +  {x}^{2} } \bigg) \: dx \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \:  {tan}^{ - 1}x = y \\

\rm \: x = tany \\

\rm \: dx =  {sec}^{2}y \: dy \\

So, on substituting these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}\bigg(\dfrac{1 + tany +  {tan}^{2}y}{1 +  {tan}^{2} y} \bigg) \:  {sec}^{2}y \: dy \\

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}\bigg(\dfrac{1+  {tan}^{2}y + tany}{{sec}^{2} y} \bigg) \:  {sec}^{2}y \: dy \\

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}( {sec}^{2}y + tany) \: dy \\

We know,

\boxed{ \rm{ \: \displaystyle\int\rm {e}^{x}[f(x) + f'(x)]  \: dx\:  =  \:  {e}^{x} \: f(x) \: +  \: c \:  }} \\

So, here

\rm \: f(y) = tany \\

\rm \: f'(y) =  {sec}^{2}y  \\

So, using this, we get

\rm \:  =  \:  {e}^{y} \: tany \:  +  \: c \\

\rm \:  =  \:  {e}^{ {tan}^{ - 1} x} \: x \:  +  \: c \\

So,

\boxed{ \rm{ \:\rm \: \displaystyle\int\rm  {e}^{ {tan}^{ - 1} x}\bigg(\dfrac{1 + x +  {x}^{2} }{1 +  {x}^{2} } \bigg) \: dx  =  x \: {e}^{ {tan}^{ - 1} x} + c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

Proof of result :-

\boxed{ \rm{ \: \displaystyle\int\rm {e}^{x}[f(x) + f'(x)]  \: dx\:  =  \:  {e}^{x} \: f(x) \: +  \: c \:  }} \\

Consider,

\displaystyle\int\rm  {e}^{x}[f(x) + f'(x)] \: dx \\

\rm \:  =  \: \displaystyle\int\rm  {e}^{x} \: f(x) \: dx +\displaystyle\int\rm {e}^{x}  f'(x) \: dx \\

By using by parts in first integral, we get

\rm \:  =  \:f(x) \displaystyle\int\rm  {e}^{x} \: dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}f(x)\displaystyle\int\rm {e}^{x} dx\bigg] dx+\displaystyle\int\rm {e}^{x}  f'(x) \: dx \\

\rm \:  =  \: {e}^{x} f(x) - \displaystyle\int\rm f'(x){e}^{x} dx \:  + c + \displaystyle\int\rm {e}^{x} f'(x) \: dx \\

\rm \:  =  \: {e}^{x} f(x)   \: +  \: c \\

\rule{190pt}{2pt}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions