Math, asked by Anonymous, 11 hours ago

Solve the limit.
 \lim \limits_{x \to 0} \dfrac{ {e}^{x} +  {e}^{ - x}  - 2 }{ {x}^{2} }
[No L'Hôpital's rule allowed]​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm \: \displaystyle\lim_{x \to 0}\rm  \:   \frac{{e}^{x} + {e}^{ - x} - 2}{ {x}^{2} }   \\

If we substitute directly x = 0, we get

\rm \:  =   \:   \frac{{e}^{0} + {e}^{ - 0} - 2}{ {0}^{2} }   \\

\rm \:  =  \: \dfrac{1 + 1 - 2}{0} \\

\rm \:  =  \: \dfrac{2 - 2}{0} \\

\rm \:  =  \: \dfrac{0}{0} \\

which is indeterminant form.

Consider, again

\rm \: \displaystyle\lim_{x \to 0}\rm  \:   \frac{{e}^{x} + {e}^{ - x} - 2}{ {x}^{2} }   \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \:   \frac{{e}^{x} +  \dfrac{1}{{e}^{x}}  - 2}{ {x}^{2} }   \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \:   \frac{{e}^{2x} + 1  - 2{e}^{x}}{ {x}^{2} {e}^{x}}   \\

\rm \: =  \:  \displaystyle\lim_{x \to 0}\rm  \:   \frac{ {({e}^{x} - 1)}^{2} }{ {x}^{2} }  \times \displaystyle\lim_{x \to 0}\rm {e}^{x}  \\

 \:  \:  \:  \:  \:  \:  \{ \:  \because \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \:  \} \\

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{{e}^{x} - 1}{x} \times \displaystyle\lim_{x \to 0}\rm  \frac{{e}^{x} - 1}{x} \times  {e}^{0}

\rm \:  =  \: 1 \times 1 \times 1 \\

\rm \:  =  \: 1 \\

Hence,

\rm\implies  \:  \: \boxed{\tt{ \:\rm \: \displaystyle\lim_{x \to 0}\rm  \:   \frac{{e}^{x} + {e}^{ - x} - 2}{ {x}^{2} } = 1 \: }}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} \:  =  \: 1 \:  \\

\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} \:  =  \: 1 \:  \\

\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} \:  =  \: 1 \:  \\

\displaystyle\lim_{x \to 0}\rm  \frac{{e}^{x} - 1}{x} \:  =  \: 1 \:  \\

\displaystyle\lim_{x \to 0}\rm  \frac{{a}^{x} - 1}{x} \:  =  \: loga \:  \\

Similar questions