Math, asked by Anonymous, 19 days ago

Solve the limit

\lim \limits_{x \to 0} \dfrac{ {x}^{2} - \tan^2x }{ {x}^{4} }

Answers

Answered by amansharma264
31

EXPLANATION.

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{x^{2} - tan^{2} x}{x^{4} }

As we know that,

Put the value of x = 0 in the equation and check their indeterminant form, we get.

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{(0)^{2} - tan^{2} (0)}{(0)^{4} }

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{0}{0}

As we can see that,

It is in the form of 0/0 indeterminant.

As we know that,

Formula of :

\sf \implies \displaystyle  \lim_{x \to 0} \dfrac{tan(x)}{x} = 0

\sf \implies \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{(x - tanx)(x + tan x)}{x^{4} } \bigg]

\sf \implies \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{(x - tanx)(x + tan x)}{x.x^{3} } \bigg]

\sf \implies \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{(x + tan x)}{x^{} } \bigg] \times  \dfrac{d}{dx} \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{(x - tanx)}{x^{3} } \bigg]

\sf \implies \displaystyle  \lim_{x \to 0} \bigg[ 1 + \dfrac{tan(x)}{x} \bigg] \times  \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{(1 - sec^{2} x)}{3x^{2} } \bigg]

\sf \implies \displaystyle  \lim_{x \to 0} (1 + 1) \times \dfrac{(- tan^{2} x)}{3x^{2} }

\sf \implies \displaystyle 2 \times  \lim_{x \to 0}  \bigg( \dfrac{tan(x)}{x} \bigg)^{2} \times \dfrac{-1}{3}

\sf \implies \dfrac{-2}{3}

\sf \implies \displaystyle  \lim_{x \to 0} \bigg[ \dfrac{x^{2} - tan^{2} x}{x^{4} } \bigg]= \dfrac{-2}{3}

                                                                                                               

MORE INFORMATION.

Standard limits.

(1) \sf  \displaystyle  \lim_{x \to 0} \frac{sin(x)}{x} =  \lim_{x \to 0} \frac{x}{sin(x)}  = 1 \ \ ; \lim_{x \to 0} sin(x) = 0

(2) \sf  \displaystyle  \lim_{x \to 0}  cos(x) =  \lim_{x \to 0} \bigg( \frac{1}{cos(x)} \bigg) = 1

(3) \sf  \displaystyle  \lim_{x \to 0}  \frac{tan(x)}{x} =  \lim_{x \to 0} \frac{x}{tan(x)} = 1 \ \ ;  \lim_{x \to 0} tan(x) = 0

Answered by Anonymous
39

Given :-

\quad \leadsto \quad \lim \limits_{\sf x \to 0} \sf \dfrac{ {x}^{2} - \tan^2x }{ {x}^{4} }

To Find :-

Value of the limit

Solution :-

If you substitute directly , x = 0 . So , the limit will lead to indeterminate form  \sf \dfrac{0}{0} .So , consider given again ;

{\quad \leadsto  \quad \displaystyle \lim_{\sf x \to 0} \sf \dfrac{ {x}^{2} - \tan^2x }{ {x}^{4} } }

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \dfrac{(x)² - (\tan \: x )²}{x \times x³}}

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \dfrac{(x + \tan \: x ) ( x - \tan \: x )}{x \times x³}}

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{x + \tan x}{x} \times \dfrac{x - \tan x}{x³} \bigg\} }

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg\{ \bigg( \dfrac{x}{x} + \dfrac{\tan x}{x} \bigg) \times \bigg( \dfrac{x- \tan x}{x³} \bigg) \bigg\} }

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0}  \bigg( \dfrac{x}{x} + \dfrac{\tan x}{x} \bigg) \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{x- \tan x}{x³} \bigg) }

Now , Use L'hopital rule in 2nd limit .

 { : \implies \quad \sf \displaystyle \sf \lim_{x \to 0} \bigg( 1 + \dfrac{\tan x}{x} \bigg) \times \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{(x-tan x)'}{(x³)'} \bigg\} }

 { : \implies \quad \sf  ( 1 + 1 ) \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{1 - \sec² x}{3x²} \bigg) }

 { : \implies \quad \sf  2 \times \displaystyle \sf \lim_{x \to 0} \bigg\{ \dfrac{- ( \sec² x - 1 ) }{3x²} \bigg\} }

 { : \implies \quad \sf  2 \times  \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{- \tan² x }{3x²} \bigg) }

 { : \implies \quad \sf  2 \times  - \dfrac{1}{3} \times \displaystyle \sf \lim_{x \to 0} \bigg( \dfrac{ \tan² x }{x²} \bigg) }

 { : \implies \quad \sf  2 \times  - \dfrac{1}{3} \times \displaystyle \sf \lim_{x \to 0} {\bigg\{ \bigg( \dfrac{ \tan \: x }{x} \bigg) \bigg\}}^{2}  }

 { : \implies \quad \sf  2 \times  - \dfrac{1}{3} \times \displaystyle \sf (1)²}

 { : \implies \quad \bf - \dfrac{2}{3}}

 {\quad \qquad {\pmb {\bf { \orange { \therefore {\underline {\underline { \displaystyle \lim_{\bf x \to 0}  \bf \dfrac{x² - \tan² (x)}{x⁴} = - \dfrac{2}{3} }}}}}}}}

Used Concepts :-

  •  \displaystyle \bf \lim_{\bf x \to 0} \bf \dfrac{\tan x}{x} = 1

  •  \bf ( a + b ) ( a - b ) = a² -b²

  •  \bf \sec² \phi = \tan² \phi + 1

  • If any limit is of the indeterminate form . Then L'hopital rule is applicable which can be applied by Differentiating both the numerator and denominator .

  •  \bf \dfrac{d}{dx} ( \tan \: x ) = \sec² x

  •  \bf \dfrac{d}{dx} ( x^{n}) = n \cdot x^{(n-1)}

  •  \displaystyle \bf \lim_{x \to c} ( pq ) = \lim_{x \to c } p \times \lim_{x \to c } q
Similar questions