Math, asked by paradkarp539, 2 months ago

solve the Linea Equation
3x-2/4+x=2/3- 2x+3/3​

Answers

Answered by Anonymous
8

\large\sf\underline{Given\::}

  • \sf\:\frac{3x-2}{4} + x =\frac{2}{3}-\frac{2x+3}{3}

\large\sf\underline{To\:find\::}

  • Value of x.

\large\sf\underline{Solution\::}

\sf\:\frac{3x-2}{4} + x =\frac{2}{3}-\frac{2x+3}{3}

  • LCM of 4 and 1 in LHS and that of 3 and 3 in RHS

\sf\implies\:\frac{3x-2+4x}{4} =\frac{2-(2x+3)}{3}

\sf\implies\:\frac{7x-2}{4} =\frac{2-2x-3}{3}

\sf\implies\:\frac{7x-2}{4} =\frac{-1-2x}{3}

  • Cross multiplying

\sf\implies\:3(7x-2)=4(-1-2x)

\sf\implies\:21x-6=-4-8x

  • Transposing (-8x) to the other side

\sf\implies\:21x+8x-6=-4

\sf\implies\:29x-6=-4

  • Transposing (-6) to the other side

\sf\implies\:29x=-4+6

\sf\implies\:29x=2

  • Transposing 29 to the other side

\large{\mathfrak\red{\implies\:x\:=\:\frac{2}{29}}}

_______________________

\large\sf\underline{Verifying\::}

\sf\:\frac{3x-2}{4} + x =\frac{2}{3}-\frac{2x+3}{3}

  • Substituting the value of x as \sf\:\frac{2}{29}

\sf\implies\:\frac{3 \times \frac{2}{29} -2}{4} + \frac{2}{29} =\frac{2}{3}-\frac{2 \times \frac{2}{29} +3}{3}

\sf\implies\:\frac{\frac{6}{29} -2}{4} + \frac{2}{29} =\frac{2}{3}-\frac{\frac{4}{29} +3}{3}

\sf\implies\:\frac{\frac{6-58}{29}}{4} + \frac{2}{29} =\frac{2}{3}-\frac{\frac{4+87}{29}}{3}

\sf\implies\:\frac{\frac{-52}{29}}{4} + \frac{2}{29} =\frac{2}{3}-\frac{\frac{91}{29}}{3}

\sf\implies\:\frac{-52}{29} \times \frac{1}{4} + \frac{2}{29} =\frac{2}{3}-\frac{91}{29} \times \frac{1}{3}

\sf\implies\:\frac{-52}{116}  + \frac{2}{29} =\frac{2}{3}-\frac{91}{87}

\sf\implies\:\frac{-52+8}{116} =\frac{58-91}{87}

\sf\implies\:\frac{-44}{116} =\frac{-33}{87}

  • Cross multiplying

\sf\implies\:-44 \times 87 =-33 \times 116

\sf\implies\:\cancel{-}3828 =\cancel{-}3828

\sf\implies\:3828 =3828

\small\fbox\blue{Hence\:Verified}

\dag\:\underline{\sf So\:the\:required\:value\:of\:x\:is\:\frac{2}{29}.}

!! Hope it helps !!

Similar questions