Math, asked by sandeep1404, 11 months ago

solve the linear differential equation (1+x)dy/dx-xy=1-x

Answers

Answered by sprao534
18
Please see the attachment
Attachments:
Answered by Anonymous
4

The solution of the linear differential equation

(1 + x)dy/dx - xy = 1 - x is given by

ye^{-x} (1 + x) = -xe^{-x} + C

  • We have ,

                (1 + x)dy/dx - xy = 1 - x

  Dividing the above equation by (1 + x), we get

       \frac{dy}{dx} - \frac{x}{1 + x}y = \frac{1 - x}{1 + x}

  • Now this differential equation is in the form  

    dy/dx - y P(x) = Q(x)  

    where P(x) = \frac{-x}{1 + x} and Q(x) =  \frac{1 - x}{1 + x}

  • Now we will find the integrating factor (I.F)

  I.F = e^{\int\limits {P(x)} \, dx }

        = e^{-\int\limits {\frac{x}{1 + x} } \, dx }

        = e^{-\int\limits {\frac{1 + x -1}{1 + x} } \, dx }

        = e^{-\int\limits {1 -\frac{1}{1 + x} } \, dx }

        = e^{-x + log(1+x)}

        = e^{-x} e^{log(1 + x)}

    I.F = (1 + x) e^{-x}        -   (1)

  • The solution is given by  

  y (I.F) = ∫ Q(x) (I.F) dx

  Now, putting the value of I.F from (1) in the above equation ,we get

  ye^{-x} (1 + x) = \int\limits {e^{-x}(1 + x)\frac{1 - x}{1 + x}  } \, dx

  ye^{-x} (1 + x) = \int\limits {e^{-x}(1 - x)  } \, dx    - (2)

  • Solving RHS

\int\limits {e^{-x}(1 - x)  } \, dx

Let -x = t

     -dx = dt

\int\limits {e^{t}(1 + t)  } \, dt

  • Now it is in the form \int\limits {e^{t}(f(t) + f'(t) } \, dt

  where f(t) = t and f'(t) = 1

  it's integration is given by  

         \int\limits {e^{t}(f(t) + f'(t) } \, dt = e^{t} f(t) + C

therefore,

        \int\limits {e^{t}(1 + t)  } \, dt = e^{t} t + C

  ∴ \int\limits {e^{-x}(1 - x)  } \, dx = -xe^{-x} + C     - (3)

  • Equating (2) and (3) , we get

∴  ye^{-x} (1 + x) = -xe^{-x} + C

Or y = \frac{-x}{1 + x} + C'

Similar questions
Math, 6 months ago