Math, asked by sultanaajmeri, 4 months ago

solve the linear equation and check the result​

Attachments:

Answers

Answered by Anonymous
1

GIVEN :-

 \\  \sf \dfrac{x}{3}  -  \dfrac{x}{5} +  \dfrac{2x}{7}   -  \dfrac{3x}{4}  = 3  \dfrac{1}{2}  \\

TO FIND :-

  • Value of 'x'.

 \\

HOW TO SOLVE MIX FRACTION ?

 \\  \sf \:p \dfrac{q}{r}  =  \dfrac{(p \times r) + q}{r}  \\

SOLUTION :-

 \\

We have ,

 \\ \implies \sf \:  \dfrac{x}{3}  -  \dfrac{x}{5}  +  \dfrac{2x}{7}  -  \dfrac{3x}{4}  = 3 \dfrac{1}{2}  \\  \\  \\  \implies\sf \:  \left( \dfrac{x}{3}   -  \dfrac{x}{5} \right) +  \left(  \dfrac{2x}{7}  -  \dfrac{3x}{4} \right) =  \dfrac{(3 \times 2) + 1}{2}  \\  \\

Taking L.C.M and solving , we get..

 \\ \implies \sf \:  \left(  \dfrac{5x - 3x}{15} \right) +  \left( \dfrac{8x - 21x}{28}  \right) =  \dfrac{7}{2}  \\    \\

Solving furthur ..

 \\  \implies\sf \:  \dfrac{2x}{15}   -   \dfrac{13x}{28}  =  \dfrac{7}{2}  \\  \\

Again by taking L.C.M and solving we get..

 \\  \implies\sf \:  \dfrac{28(2x)  - 15(13x)}{15 \times 28}  =  \dfrac{7}{2}  \\  \\  \\ \implies \sf \:  \dfrac{56x - 195x}{420} =  \dfrac{7}{2}   \\  \\  \\ \implies \sf \:  \dfrac{139x}{420}  =  \dfrac{7}{2}  \\  \\  \\ \implies \sf \: x =  \dfrac{7}{2}  \times  \dfrac{420}{139}  \\  \\  \\  \implies\sf \: x =  \dfrac{2940}{278}  \\  \\  \\  \implies\boxed{ \sf \:  x = { \dfrac{735}{69} }}

Similar questions