Math, asked by dhruvchauhan912, 1 month ago

Solve the linear equation by Cramer’s Rule method. 6x – 3y = -10 ; 3x + 5y -8 =0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are

6x - 3y = - 10

and

3x + 5y - 8 = 0

can be rewritten as

3x + 5y = 8.

So, given pair of linear equation in matrix form can be represented as

\rm :\longmapsto\:\bigg[ \begin{matrix}6& - 3 \\ 3&5 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{c} - 10\\8\end{array}\right]\end{gathered}

where,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}6& - 3 \\ 3&5 \end{matrix} \bigg]

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c} - 10\\8\end{array}\right]\end{gathered}

Now, Consider

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 6 &\sf  - 3  \\ \sf 3 &\sf 5 \\\end{array}

\rm \:  =  \:30 - ( - 9)

\rm \:  =  \:30  + 9

\rm \:  =  \:39

\bf\implies \: |A| = 39

It means system of equations is consistent having unique solution.

Now, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf  - 10 &\sf  - 3  \\ \sf 8 &\sf  5 \\\end{array}

\rm \:  =  \: - 50 - ( - 24)

\rm \:  =  \: - 50 + 24

\rm \:  =  \: - 26

\bf\implies \:D_1 =  - 26

Now, Consider

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 6 &\sf  - 10  \\ \sf 3 &\sf  8 \\\end{array}

\rm \:  =  \:48 - ( - 30)

\rm \:  =  \:48  + 30

\rm \:  =  \:78

\bf\implies \:D_2 = 78

Hence,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 26}{39}  =  - \dfrac{2}{3}

and

\rm :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{78}{39}  =  2

Similar questions