Math, asked by tusharwaghsoil7056, 1 month ago

Solve the linear equation x 2 p + y2 q = ( x + y ) z

Answers

Answered by ShajithKaran16
1

ANSWER:

Answers>Math>Differential Equations

Question #148142

Solve the partial differential equation: x^2p+y^2q=z^2

Expert's answer

x^2p + y^2q = z^2\\ \textsf{The lagrange auxiliary equation is}\\ \frac{\mathrm{d}x}{x^2} = \frac{\mathrm{d}y}{y^2} = \frac{\mathrm{d}z}{z^2} \\ \frac{\mathrm{d}x}{x^2} + \frac{\mathrm{d}y}{y^2} - 2\frac{\mathrm{d}z}{z^2} = 0\\ \textsf{Choosing}\,\,\left(\frac{1}{x^2}, \frac{1}{y^2}, -2\frac{1}{z^2}\right) \,\,\textsf{as multpliers.}\\ \int\frac{\mathrm{d}x}{x^2} + \int\frac{\mathrm{d}y}{y^2} - 2\int\frac{\mathrm{d}z}{z^2} = 0\\ -\frac{1}{x} - \frac{1}{y} + 2\frac{1}{z} = C\\ \frac{1}{x} + \frac{1}{y} - 2\frac{1}{z} = C\\ yz + xz - 2xy = Cxyz\\ \textsf{Let}\,z\,\textsf{be constant}.\\ \textsf{It implies}\,\, \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = 0.\\ \int\frac{\mathrm{d}x}{x^2} - \int\frac{\mathrm{d}y}{y^2} = 0\\ -\frac{1}{x} = -\frac{1}{y} + \phi(z), \frac{1}{x} - \frac{1}{y} = -\phi(z)\\ y - x = \phi(z)xy\\ \frac{1}{x} - \frac{1}{y} = -\phi(z)\\ -\frac{1}{x^2} + \frac{1}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}(\phi(z))}{\mathrm{d}z}\cdot\frac{\mathrm{d}z}{\mathrm{d}x}\\ \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = -\frac{\mathrm{d}(\phi(z))}{\mathrm{d}z}\cdot\mathrm{d}z \\ \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = 0\cdot\mathrm{d}z \\ \frac{\mathrm{d}(\phi(z))}{\mathrm{d}z} = 0\\ \mathrm{d}(\phi(z)) = 0\cdot\mathrm{d}z \\ \int\mathrm{d}(\phi(z)) = \int 0 \cdot\mathrm{d}z\\ \displaystyle\therefore \phi(z) = C\\ y - x = Cxy\\ \phi\left(\frac{1}{x} - \frac{1}{y}, \,\frac{1}{x} + \frac{1}{y} - \frac{2}{z}\right) = 0,\,\,\textsf{is the solution to the PDE}x

2

p+y

2

q=z

2

The lagrange auxiliary equation is

x

2

dx

=

y

2

dy

=

z

2

dz

x

2

dx

+

y

2

dy

−2

z

2

dz

=0

Choosing(

x

2

1

,

y

2

1

,−2

z

2

1

)as multpliers.

x

2

dx

+∫

y

2

dy

−2∫

z

2

dz

=0

x

1

y

1

+2

z

1

=C

x

1

+

y

1

−2

z

1

=C

yz+xz−2xy=Cxyz

Letzbe constant.

It implies

x

2

dx

y

2

dy

=0.

x

2

dx

−∫

y

2

dy

=0

x

1

=−

y

1

+ϕ(z),

x

1

y

1

=−ϕ(z)

y−x=ϕ(z)xy

x

1

y

1

=−ϕ(z)

x

2

1

+

y

2

1

dx

dy

=

dz

d(ϕ(z))

dx

dz

x

2

dx

y

2

dy

=−

dz

d(ϕ(z))

⋅dz

x

2

dx

y

2

dy

=0⋅dz

dz

d(ϕ(z))

=0

d(ϕ(z))=0⋅dz

∫d(ϕ(z))=∫0⋅dz

∴ϕ(z)=C

y−x=Cxy

ϕ(

x

1

y

1

,

x

1

+

y

1

z

2

)=0,

Answered by fyrelord
0

x^2p + y^2q = z^2\\ \textsf{The lagrange auxiliary equation is}\\ \frac{\mathrm{d}x}{x^2} = \frac{\mathrm{d}y}{y^2} = \frac{\mathrm{d}z}{z^2} \\ \frac{\mathrm{d}x}{x^2} + \frac{\mathrm{d}y}{y^2} - 2\frac{\mathrm{d}z}{z^2} = 0\\ \textsf{Choosing}\,\,\left(\frac{1}{x^2}, \frac{1}{y^2}, -2\frac{1}{z^2}\right) \,\,\textsf{as multpliers.}\\ \int\frac{\mathrm{d}x}{x^2} + \int\frac{\mathrm{d}y}{y^2} - 2\int\frac{\mathrm{d}z}{z^2} = 0\\ -\frac{1}{x} - \frac{1}{y} + 2\frac{1}{z} = C\\ \frac{1}{x} + \frac{1}{y} - 2\frac{1}{z} = C\\ yz + xz - 2xy = Cxyz\\ \textsf{Let}\,z\,\textsf{be constant}.\\ \textsf{It implies}\,\, \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = 0.\\ \int\frac{\mathrm{d}x}{x^2} - \int\frac{\mathrm{d}y}{y^2} = 0\\ -\frac{1}{x} = -\frac{1}{y} + \phi(z), \frac{1}{x} - \frac{1}{y} = -\phi(z)\\ y - x = \phi(z)xy\\ \frac{1}{x} - \frac{1}{y} = -\phi(z)\\ -\frac{1}{x^2} + \frac{1}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}(\phi(z))}{\mathrm{d}z}\cdot\frac{\mathrm{d}z}{\mathrm{d}x}\\ \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = -\frac{\mathrm{d}(\phi(z))}{\mathrm{d}z}\cdot\mathrm{d}z \\ \frac{\mathrm{d}x}{x^2} - \frac{\mathrm{d}y}{y^2} = 0\cdot\mathrm{d}z \\ \frac{\mathrm{d}(\phi(z))}{\mathrm{d}z} = 0\\ \mathrm{d}(\phi(z)) = 0\cdot\mathrm{d}z \\ \int\mathrm{d}(\phi(z)) = \int 0 \cdot\mathrm{d}z\\ \displaystyle\therefore \phi(z) = C\\ y - x = Cxy\\ \phi\left(\frac{1}{x} - \frac{1}{y}, \,\frac{1}{x} + \frac{1}{y} - \frac{2}{z}\right) = 0,\,\,\textsf{is the solution to the PDE}x

Similar questions