Math, asked by aryanpratapsingh798, 2 months ago

solve the linear programming problem under the following constraints
5x+3y <=15,2x+5y <=10and x>=0,y>=0.Find maximum value of Z=10x+3y​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given constraints are .

\rm :\longmapsto\:5x + 3y \leqslant 15 -  -  - (1)

\rm :\longmapsto\:2x + 5y \leqslant 10 -  -  - (2)

\rm :\longmapsto\:x \geqslant 0 -  -  - (3)

\rm :\longmapsto\:y \geqslant 0 -  -  - (4)

Consider, first constraint,

\rm :\longmapsto\:5x + 3y = 15

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:5x + 0 = 15

\rm :\longmapsto\:5x = 15

\rm :\longmapsto\:x = 3

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 + 3y = 15

\rm :\longmapsto\:3y = 15

\rm :\longmapsto\:y = 5

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 5 \\ \\ \sf 3 &amp; \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 5) & (3 , 0)

➢ See the attachment graph.

Now, Consider the second constraint,

\rm :\longmapsto\:2x + 5y = 10

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:2x + 0 = 10

\rm :\longmapsto\:2x  = 10

\rm :\longmapsto\:x  = 5

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 + 5y = 10

\rm :\longmapsto\:5y = 10

\rm :\longmapsto\:y = 2

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 2 \\ \\ \sf 5 &amp; \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 2) & (5 , 0)

➢ See the attachment graph.

Now, from the graph we concluded that feasible region is bounded.

So, the value of Z at each corner of feasible region is as follow :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Corner \: point &amp; \bf Z =10x + 3y  \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf (0,0) &amp; \sf 0 \\ \\ \sf (3,0) &amp; \sf 30\\ \\ \sf (0,2) &amp; \sf 6\\ \\ \sf \bigg(\dfrac{45}{19}, \dfrac{20}{19} \bigg)  &amp; \sf \dfrac{510}{19}  \end{array}} \\ \end{gathered}

Thus, Maximum value of Z = 30 at (3, 0).

Attachments:
Similar questions