Math, asked by Anonymous, 1 month ago

Solve the log equation for x :-
x^{\left(\dfrac{\log_3 x + 5}{3}\right)}=10^{\Big(5+\log_{10}x\Big)}}

Spam will be reported immediately.

Answers

Answered by mathdude500
10

Appropriate Question is

Solve for x :-

\rm :\longmapsto\:x^{\left(\dfrac{\log_{10} x + 5}{3}\right)}=10^{\Big(5+\log_{10}x\Big)}

\large\underline{\sf{Solution-}}

The given equation is

\rm :\longmapsto\:x^{\left(\dfrac{\log_{10} x + 5}{3}\right)}=10^{\Big(5+\log_{10}x\Big)}

Taking log to the base 10 on both sides, we get

\rm :\longmapsto\: log_{10}\bigg[ x^{\left(\dfrac{\log_{10} x + 5}{3}\right)}\bigg]=log_{10}\bigg[10^{\Big(5+\log_{10}x\Big)}\bigg]

We know,

 \boxed{ \rm \:  log {x}^{y} = y \: logx}

\rm :\longmapsto\:\dfrac{1}{3}\bigg[ log_{10}(x) + 5\bigg] log_{10}(x) = \bigg[ log_{10}(x) + 5\bigg] log_{10}(10)

We know,

 \boxed{ \rm \:log_{10}(10) = 1}

\rm :\longmapsto\:\dfrac{1}{3}\bigg[ log_{10}(x) + 5\bigg] log_{10}(x) = \bigg[ log_{10}(x) + 5\bigg]

\rm :\longmapsto\:\dfrac{1}{3}\bigg[ log_{10}(x) + 5\bigg] log_{10}(x)  -  \bigg[ log_{10}(x) + 5\bigg] = 0

\rm :\longmapsto\:\bigg[\dfrac{1}{3} log_{10}(x) - 1\bigg]\bigg[ log_{10}(x) + 5\bigg] = 0

\rm :\longmapsto\:\bigg[\dfrac{1}{3} log_{10}(x) - 1\bigg] = 0 \:  \: or \:  \: \bigg[ log_{10}(x) + 5\bigg] = 0

\rm :\longmapsto\:\dfrac{1}{3} log_{10}(x)= 1 \:  \: or \:  \:log_{10}(x)= - 5

\rm :\longmapsto\: log_{10}(x)= 3 \:  \: or \:  \:log_{10}(x)= - 5

We know,

\boxed{ \rm \: log_{a}(b) = c \: \bf\implies \:b =  {a}^{c}}

So, using this

\rm :\longmapsto\:x =  {10}^{3} \:  \:  \: or \:  \:  \: x =  {10}^{ - 5}

Verification :-

\red{\rm :\longmapsto\:When \: x =  {10}^{3}}

So, given equation

\rm :\longmapsto\: {10}^{ 3{\left(\dfrac{\log_{10}  {10}^{3} + 5}{3}\right)}}=10^{\Big(5+\log_{10} {10}^{3} \Big)}

\rm :\longmapsto\: {10}^{ 3{\left(\dfrac{3 + 5}{3}\right)}}=10^{\Big(5+3 \Big)}

\rm :\longmapsto\: {10}^{ 3{\left(\dfrac{8}{3}\right)}}=10^{\Big(8 \Big)}

\bf\implies \: {10}^{8} =  {10}^{8}

Hence, Verified

\red{\rm :\longmapsto\:When \: x =  {10}^{ - 5}}

So, given equation is

\rm :\longmapsto\: {10}^{  - 5{\left(\dfrac{\log_{10}  {10}^{ - 5} + 5}{3}\right)}}=10^{\Big(5+\log_{10} {10}^{ - 5} \Big)}

\rm :\longmapsto\: {10}^{ 3{\left(\dfrac{ - 5 + 5}{3}\right)}}=10^{\Big(5 - 5\Big)}

\rm :\longmapsto\: {10}^{ 3{\left(\dfrac{0}{3}\right)}}=10^{\Big(0\Big)}

\rm :\longmapsto\: {10}^{0} =  {10}^{0}

Hence, Verified

Similar questions