Math, asked by babhlekomal, 9 months ago

Solve the logarithm question In JEE

6 +    log_{ \frac{3}{2} }( \frac{1}{3 \sqrt{2} }  \sqrt{4 -  \frac{1}{3 \sqrt{2} } \sqrt{4 -  \frac{1}{3 \sqrt{2} }  \sqrt{4 -  \frac{1}{3 \sqrt{2} }..... } }  }   ) \: is

Answers

Answered by majnu14312
0

Step-by-step explanation:

I hope this will help you

Mark as branliest answer

Attachments:
Answered by RohanBabhale
1

\blue{\bold{\underline{\underline{\boxed{answer : }}}}} \:

let \: \:  y = \sqrt{4 -  \frac{1}{3 \sqrt{2} }y }  \\    \\  {y}^{2}  = 4 -  \frac{y}{3 \sqrt{2} }  \\  \\ 3 \sqrt{2}  {y}^{2}  + y - 12 \sqrt{2 }  = 0 \\  \\ y =   - 1 +  -  \sqrt{1  + 4 \times 12 \sqrt{2}  \times 3 \sqrt{2} } \:   \div 6 \sqrt{2}  \\  \\ y =   \frac{ - 1 +  - 17}{6 \sqrt{2} }  =  \frac{8}{3 \sqrt{2} }  \\  \\ 6 +   log_{ \frac{3}{2} }( \frac{1}{3 \sqrt{2}  }  \times  \frac{8}{3 \sqrt{2} } )  \\  \\ 6 +  log_{ \frac{3}{2} }( \frac{4}{9} )  \\  \\  log_{ \frac{3}{2} }( \frac{4}{9} )  = y \\  \\ ( \frac{3}{2}) ^{y}  =  \frac{4}{9}  = ( \frac{2}{3} ) ^{2}   = ( \frac{3}{2} ) ^{ - 2}  \\  \\ y =  - 2 \\  \\ 6 + ( - 2) = 4 \\  \\ therefore \: value \: of \: the \: question \: is \:   \boxed{\underline{4}} \\  \\ mark \: it \: as \: brainliest \: and \:  \\ follow \: me \\  \\ have \: a \: good \: day

Similar questions