Math, asked by ccbhedke, 1 year ago

solve the matrix.......... ​

Attachments:

Answers

Answered by abhi569
11

Answer:

x = 0

y = 27 / 2

y = 27 / 2

p = 9

Step-by-step explanation:

It is given that the value of 2\left[\begin{array}{cc}x&y\\z&p\end{array}\right] - 9\left[\begin{array}{cc}-2&3\\1&0\end{array}\right]\:is\:18\text {I}

And, from the properties of matrix we know I = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]

Therefore,

\implies2\left[\begin{array}{cc}x&y\\z&p\end{array}\right] - 9\left[\begin{array}{cc}-2&3\\1&0\end{array}\right]\:is\:18\left[\begin{array}{cc}1&0\\0&1\end{array}\right]

\implies \left[\begin{array}{cc}2x&2y\\2z&2p\end{array}\right] - \left[\begin{array}{cc}-18&27\\9&0\end{array}\right]\:=\:\left[\begin{array}{cc}18&0\\0&18\end{array}\right]

\implies \left[\begin{array}{cc}2x-(-18)&2y-27\\2z-9&2p-0\end{array}\right] = \left[\begin{array}{cc}18&0\\0&18\end{array}\right]

\implies \left[\begin{array}{cc}2x+18&2y-27\\2z-9&2p-0\end{array}\right] = \left[\begin{array}{cc}18&0\\0&18\end{array}\right]

Comparing values : -

= > 2x + 18 = 18

= > 2x = 0

= > x = 0

= > 2y - 27 = 0

= > 2y = 27

= > y = 27 / 2

= > 2z - 9 = 0

= > 2z = 9

= > y = 27 / 2

= > 2p = 18

= > p = 18 / 2

= > p = 9

Answered by MissSolitary
2

 \underline{  \boxed{{ \huge{ \mathtt{M}}} \mathtt{ATRIX \:  \: }}}

Choose the correct alternative :

\sf if \: 2 \left[ \begin{array}{c c } \sf x & \sf y \\ \\  \sf z& \sf \: p \end{array} \right]  - 9 \left[ \begin{array}{c c } \sf  - 2& \sf 3 \\\\ \sf \: 1& \sf \: 0 \end{array} \right] \:  = 18   \mathtt{I}

(a) X = 8 ; z = 9/2 (✔️)

(b) X = 0 ; z = -9/2

(c) X = 0 ; z = 9/2

(d) None of these

 \underline{ \underline{{ \mathtt{ \:  \:  \:  ANSWER - }}}}

 \implies{ \mathtt{\left[ \begin{array}{c c } \sf  2x& \sf 2y \\\\ \sf \: 2z& \sf \: 2p \end{array} \right] - \left[ \begin{array}{c c } \sf  - 18& \sf 27 \\\\ \sf \: 9& \sf \: 0 \end{array} \right] = 18 \mathtt{I}}} \\  \\  \\  \implies{ \mathtt{\left[ \begin{array}{c c } \sf  2x - ( - 18)&  \:  \:  \: \sf 2y - 27 \\\\ \sf \: 2z - 9& \sf \: 2p - 0 \end{array} \right] = 18\left[ \begin{array}{c c } \sf  1& \sf 0 \\\\ \sf \: 0& \sf \: 1 \end{array} \right]}} \\  \\  \\  \implies{ \mathtt{\left[ \begin{array}{c c } \sf  2x + 18&  \:  \:  \: \sf 2y  - 27\\\\ \sf \: 2z - 9&  \:  \:  \: \sf \: 2p - 0 \end{array} \right] =\left[ \begin{array}{c c } \sf  18& \sf 0 \\\\ \sf \: 0& \sf \: 18 \end{array} \right] }} \\  \\  \\  \implies{ \mathtt{2x + 18 = 18}} \\  \implies{ \mathtt{2x = 18 - 18}} \\ \implies{ \mathtt{x =  \frac{0}{2} }} \\    \boxed{ \purple{\therefore{ \mathtt{x = 0}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \implies{ \mathtt{2z - 9 = 0 }} \\  \implies{ \mathtt{2z = 9}} \\  \implies{ \mathtt{z =  \frac{9}{2} }} \\  \boxed{ \mathtt{ \purple{ \therefore{z =  \frac{9}{2} }}}} \:  \:  \:  \:  \:  \:  \:  \:

_____________________

@MissSolitary✌️

_____

Similar questions