Math, asked by rishikesh5717, 3 months ago

Solve the matrix equation.

Attachments:

Answers

Answered by iamramcharan2005
0

Answer:

2x^2 -9x

12x. 0

is the answer

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\: \begin{bmatrix} 2x &  3\end{bmatrix}\: \begin{bmatrix} 1 &  2\\  - 3 & 0\end{bmatrix}\: \begin{bmatrix} x\\ 3\end{bmatrix} = O

\rm :\longmapsto\:\: \begin{bmatrix} 2x - 9 &  4x + 0\end{bmatrix}\: \: \begin{bmatrix} x\\ 3\end{bmatrix} = O

\rm :\longmapsto\:\: \begin{bmatrix} 2x - 9 &  4x\end{bmatrix}\: \: \begin{bmatrix} x\\ 3\end{bmatrix} = O

\rm :\longmapsto\:\: \begin{bmatrix} x(2x - 9)  + 4x \times 3\end{bmatrix}\:  = \: \begin{bmatrix} 0\end{bmatrix}

\rm :\longmapsto\:\: \begin{bmatrix} 2 {x}^{2}  - 9x  + 12x \end{bmatrix}\:  = \: \begin{bmatrix} 0\end{bmatrix}

\rm :\longmapsto\:\: \begin{bmatrix} 2 {x}^{2} + 3x \end{bmatrix}\:  = \: \begin{bmatrix} 0\end{bmatrix}

\rm :\implies\: {2x}^{2} + 3x = 0

\rm :\longmapsto\:x(2x + 3) = 0

\bf\implies \:x = 0 \:  \:  \: or \:  \:  \: x =  - \dfrac{3}{2}

Additional Information :-

1. If A and B are two matrices, then AB is possible only when number of columns if matrix A is equals to number of rows of matrix B.

2. If A and B are two matrices, then matrix addition or subtraction is possible only when A and B are of same order.

3. Matrix multiplication may or may not be Commutative.

4. Matrix multiplication is Associative, i.e. A(BC) = (AB)C

5. Matrix multiplication is Distributive, i.e. A(B + C) = AB + AC.

Similar questions