Math, asked by aathi2007, 3 months ago

solve the numbers anyone say answer

Attachments:

Answers

Answered by 12thpáìn
181

b) Solve for x

  • \sf \cfrac{ {2}^{2x - 1} }{ {2}^{x + 2} } = 4

 \underline{ \green{ \sf {Step \: by \: step \: explanation}}}

 \implies \sf \cfrac{ {2}^{2x - 1} }{ {2}^{x + 2} } = 4 \\   \\  \implies\sf \cfrac{ {2}^{2x - 1} }{ {2}^{x + 2} } =  {2}^{2} \\  \\  \implies \sf  {2}^{2x - 1}  =  {2}^{2}  \times  {2}^{x + 2}  \\  \\ \implies \sf  {2}^{2x - 1}  =  {2}^{2 + x + 2}  \\  \\ \implies \sf  {2}^{2x - 1}  =  {2}^{ x + 4}   \\   \\ \implies \sf  2x - 1 = x + 4 \\  \\ \implies \sf  2x - x = 4 + 1 \\  \\ \implies \sf  x = 5 \\  \\  \\

 \sf  Verification \\→ \sf \cfrac{ {2}^{2x - 1} }{ {2}^{x + 2} } = 4  \\→ \sf \cfrac{ {2}^{2 \times 5- 1} }{ {2}^{5 + 2} } = 4 \\ →\sf \cfrac{ {2}^{10 - 1} }{ {2}^{7} } = 4 \\ →\sf \cfrac{ {2}^{9} }{ {2}^{7} } = 4  \\→  \sf{2}^{9 - 7}  = 4  \\ →\sf{2}^{2}  = 4 \\→ \sf{4}^{}  = 4_{\gray{Verified}}

Answered by badolamamta68
1

Step-by-step explanation:

hope this helps you

mark me as a brainliest

Attachments:
Similar questions