Math, asked by manishaswain2003, 3 months ago

solve the ODE 3y^2 dy/dx + xy^3=3​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

3 {y}^{2}  \frac{dy}{dx}  + x {y}^{3}  = x \\

Order of differential equation is 1

 \implies3 {y}^{2}  \frac{dy}{dx} = x(1 -  {y}^{3}  ) \\

 \implies \frac{1}{x}.  \frac{dy}{dx}  =  \frac{(1 -  {y}^{3}) }{3 {y}^{2} }  \\

 \implies \frac{3 {y}^{2} }{1 -  {y}^{3} } dy = x.dx \\

Integrating both sides

 \implies  - \int \frac{ -  3{y}^{2} }{1 -  {y}^{3} } dy =  \int \: x \: dx \\

putting 1 - y³ = t => -3y²dy = dt

 \implies -  \int \frac{dt}{t}  =  \int \: x \: dx \\

 \implies -  ln(t)  =  \frac{ {x}^{2} }{2}  + c \\

 \implies ln(1 -  {y}^{3} )  =  -  \frac{ {x}^{2} }{2}  + c \\

 \implies(1 -  {y}^{3} ) =  {e}^{   - \frac{ {x}^{2} }{2} + c }  \\

 \implies(1 -  {y}^{3} ) = k {e}^{ -  \frac{ {x}^{2} }{2} }  \:  \:  \: (where \:  \: k =  {e}^{c} ) \\

 \implies {y}^{3}  = 1 - k {e}^{  - \frac{ {x}^{2} }{2} }  \\

 \implies \: y =  \sqrt[3]{1 - k {e}^{  - \frac{ {x}^{2} }{2} } }  \\

Similar questions