Physics, asked by rishuranjan64, 11 months ago

Solve the one in attachment:​

Attachments:

Answers

Answered by Anonymous
5

\huge\tt{\red{\underline{Given:}}}

★Force = 20N (F)

★ Distance = 30cm =0.3m (r)

\huge\tt{\red{\underline{To\:\:Find:}}}

★value of charges of both bodies

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We will use Columb's Law

\huge\tt{\red{\underline{Answer:}}}

We have,

Force = 20N

Distance between the charged particles = 0.3m

Now, let the charge on first body be q_{1} and on second body be q_{2}

_______________________________________

Atq,

{\underline{\boxed{\red{q_{1}+q_{2}=30\mu C}}}} .......... (1)

Now by Columb's Law,

\large\green{\boxed{F=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{q_{1}q_{2}}{r^{2}}}}

where

  • F is the force
  • q_{1}&q_{2} are the two charges
  • r is the distance of seperation.

\implies F = \dfrac{q_{1}q_{2}}{r^{2}}\dfrac{1}{4\pi\epsilon_{0}}

\implies 20N =\dfrac{q_{1}q_{2}\times 9\times 10^{9}}{(0.3m)^{2}}

\implies 20N = \dfrac{q_{1}q_{2}\times 9\times 10^{9}}{(0.09m^{2}}

\implies 20N = \dfrac{q_{1}q_{2}\times 9\times 10^{9}\times 100}{(9m^{2})}

\implies 20N = \dfrac{q_{1}q_{2}\times \cancel{9}\times 10^{9}\times 100}{(\cancel{9}m^{2})}

\implies 20N =q_{1}q_{2}\times10^{11}

\implies q_{1}q_{2}=\dfrac{20C^{2}}{10^{11}}

{\underline{\boxed{.°. q_{1}q_{2}=20\times10^{-11}C^{2}}}}

Now, we should find q_{1}-q_{2}in order to find q_{1}&q_{2}.

______________________________________

So we can find q_{1}-q_{2} as

\large{\boxed{\red{(q_{1}-q_{2})^{2}=(q_{1}+q_{2}^{2})-4q_{1}q_{2}}}}

\implies (q_{1}-q_{2})^{2}=(30\mu C) ^{2}-4\times 20\times 10^{-11}C^{2}

\implies (q_{1}-q_{2})^{2}=900\mu^{2}C^{2}-80\times10^{-11}C^{2}

\implies (q_{1}-q_{2})^{2}=900\mu^{2}C^{2}-800\times(10^{-6}) ^{2} C^{2}

\implies (q_{1}-q_{2})^{2}= 900\mu^{2}C^{2}-800\mu^{2}C^{2}

\implies (q_{1}-q_{2})^{2}= 100\mu^{2}C^{2}

 \implies (q_{1}-q_{2})^{2}= (10\mu C) ^{2}

{\underline{\boxed{\red{.°. q_{1}-q_{2}=10\mu C}}}}. ............ (2)

________________________________

On adding equations 1&2 ,

\implies q_{1}+q_{2}+q_{1}-q_{2}=30\mu C+10\mu C

\implies q_{1}+\cancel{q_{2}}+q_{1}-\cancel{q_{2}}=40\mu C

\implies 2q_{1}=40\mu C

\implies q_{1}=\dfrac{40\mu C}{2}

{\underline{\boxed{\purple{.°.q_{1}=20\mu C}}}}

_____________________________________

Now, from 1,

 \implies q_{1}+q_{2}=30\mu C

\implies 10\mu C+q_{2}=30\mu C

\implies q_{2}=(30-20) \mu C

{\underline{\boxed{\orange{.°. q_{2}=10\mu C}}}}

Therefore the two charges are 10\mu C &  20\mu C.

Attachments:

BrainlyConqueror0901: well done : )
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{q_{1}=20\:\mu c}}}

\green{\tt{\therefore{q_{2}=10\:\mu c}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\ \tt: \implies Sum \: of \: two \: charges = 30 \: \mu c \\ \\ \tt: \implies Force(F) = 20 \: N \\ \\ \tt: \implies distance \: between \: them(r) = 0.3 \: m \\ \\ \red{\underline \bold{To \: Find : }} \\ \tt: \implies q_{1} = ? \\ \\ \tt: \implies q_{2} = ?

• According to given question :

 \bold{As \: we \: know \: that} \\ \tt: \implies q_{1} + q_{2} = 30 \: \mu c \\ \\ \tt: \implies q_{1} + q_{2} = 3 \times {10}^{ - 5} \: c-----(1) \\ \\ \bold{As \: per \: Coulomb's \: law} \\ \tt: \implies |F|= \dfrac{1}{4\pi \epsilon _{o} } \dfrac{ q_{1} q_{2} }{ {r}^{2} } \\ \\ \tt: \implies 20 = 9 \times {10}^{9} \times \dfrac{ q_{1} q_{2} }{ {0.3}^{2} } \\ \\ \tt: \implies 20 = {10}^{11} \times q_{1} q_{2} \\ \\ \tt: \implies q_{1} q_{2} = 2 \times {10}^{ - 10} \: {c} - - - - - (2) \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies (q_{1} - q_{2})^{2}= { (q_{1} + q_{2}})^{2} - 4 q_{1} q_{2} \\ \\ \tt: \implies (q_{1} - q_{2})^{2} = {(3 \times 10^{ - 5}) }^{2} - 4 \times 2 \times {10}^{ - 10} \\ \\ \tt: \implies (q_{1} - q_{2})^{2} =9 \times 10^{ - 10} - 8 \times 10^{ - 10} \\ \\ \tt: \implies (q_{1} - q_{2})^{2}= 1 \times 10 ^{ - 10} \\ \\ \tt:\implies q_{1}-q_{2}=\sqrt{10^{-10}}\\\\ \tt:\implies q_{1}-q_{2}=10^{-5}\:c-----(3)\\ \\ \text{From \: (1) \: and \: (3)} \\ \\ \green{ \tt: \implies q_{1} = 20 \: \mu c} \\ \\ \green{ \tt: \implies q_{2} = 10\: \mu c}

Similar questions