Math, asked by bandarusirisha7, 8 months ago

solve the p.d.e (mz-ny)p+(nx-lz)q=ly-mx​

Answers

Answered by Swarup1998
38

Partial Differential Equation

Solution. The given partial differential equation is

\quad (mz-ny)p+(nx-lz)q=ly-mx

Then, Lagrange's subsidiary equations are

\quad\frac{dx}{mz-ny}=\frac{dy}{nx-lz}=\frac{dz}{ly-mx}\quad...(i)

Step 1.

We take multipliers x, y, z to the ratios of (i) respectively. Then

\quad\frac{x\:dx+y\:dy+z\:dz}{(mz-ny)x+(nx-lz)y+(ly-mx)z}

\quad=\frac{x\:dx+y\:dy+z\:dz}{0}

This gives: x\:dx+y\:dy+z\:dz=0

On integration, we get

\quad x^{2}+y^{2}+z^{2}=c_{1} where c_{1} is integral constant.

Step 2.

Now we take multipliers l, m, n to the ratios of (i) respectively. Then

\quad\frac{l\:dx+m\:dy+n\:dz}{l(mz-ny)+m(nx-lz)+n(nx-lz)}

\quad=\frac{l\:dx+m\:dy+n\:dz}{0}

This gives: l\:dx+m\:dy+n\:dz=0

On integration, we get

\quad lx+my+nz=c_{2} where c_{2} is integral constant.

Answer step. Hence the required general solution is \quad\phi(x^{2}+y^{2}+z^{2},\:lx+my+nz)=0, where \phi is an arbitrary function.

Similar questions