Math, asked by mehdesai24, 9 months ago

solve the pair of equation...
 \frac{2}{ \sqrt{x} }  +  \frac{3}{\sqrt{y} }  = 2 \\  \\     \frac{4}{ \sqrt{x} }    - \frac{9}{ \sqrt{y} }  =  - 1

Answers

Answered by codiepienagoya
0

Simplify:

Step-by-step explanation:

\ Given \ value: \\

\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}} =2.........(i)

\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1........(ii)\\\\\ find: \\\\\ x \ = \ ? \\\\ \ y \ = \ ? \\\\

\ Solution: \\\\\ multiply \ by \ 3 \ in \ the \ equation \ (i)...\\\\3 \times (\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}})=3 (2)\\\\\frac{6}{\sqrt{x}}+\frac{9}{\sqrt{y}}=6..................(iii)\\\\\ Subtract \ equation \ (iii) \ to \ (ii)\\\\

\frac{6}{\sqrt{x}}+\frac{9}{\sqrt{y}}=6 \\\\\ - \\\\\frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}= -1 \\\\\frac{2}{\sqrt{x}}=6\\\\\sqrt{x}=3\\\\

\sqrt{x}=3\\\\\ put \ the \ value \ of \sqrt{x} \ in \ equation \ (i) \\\\ \frac{2}{3}+\frac{3}{\sqrt{y}} =2 \\\\\frac{3}{\sqrt{y}} =2 -  \frac{2}{3} \\\\\frac{3}{\sqrt{y}} = \frac{6-2}{3} \\\\\frac{3}{\sqrt{y}} = \frac{4}{3} \\\\\sqrt{y}= \frac{4}{9}\\\\

\ x \ =  9 \ and \ y \ = \frac{16}{81}

Learn more:

  • Simplify: https://brainly.in/question/8451502
Similar questions