Solve the pair of equations by the method of substitution:
x+y=a+b ; ax-by=a²-b²
Answers
Answered by
9
The value of x & y.
We have,
- x + y = a + b..........................(1)
- ax - by = a² - b²....................(2)
From equation (1),we get;
Putting the value of y in equation (2), we get;
Putting the value of x in equation (3), we get;
Thus,
Answered by
2
Step-by-step explanation:
We have:-
x + y = a + b
ax - by = a² - b²
To find:-
x and y
Solution:-
x + y = a + b ----------- (1)
ax - by = a² - b² ------ (2)
From equation (1), we can say that
---> x+y = a+b
---> y = a+b-x
[After getting the above, put the value of y in equation 2]
---> ax - b (a+b-x) = a² - b²
---> ax-ab-b²+bx = a² - b²
---> ax-ab+bx = a²
---> ax+bx = a² + ab
---> x (a+b) = a² + ab
---> x = a²+ab / a+b
As we know that,
y = a+b-x
So,
---> y = a+b- (a²+ab / a+b)
---> y = (a+b)² - a² - ab / a+b
---> y = b² +ab / a+b
So, y = b²+ab/a+b
And x = a²+ab/a+b.
Hence, proved.......
Similar questions