Math, asked by sophijacintha, 1 year ago

solve the pair of linear eqations 1/2x - 1/y=-1 and 1/x + 1/2y=8​

Answers

Answered by DhanyaDA
3

Given

Two linear equations are

(1) \dfrac{1}{2x}  -  \dfrac{1}{y}  =  - 1 \\ (2) \dfrac{1}{x}  +  \frac{1}{2y}  = 8

To find:

Values of x and y

EXPLANATION:

\sf let \: a=\dfrac{1}{x} \\ \sf b=\dfrac{1}{y}

then the equations become

(1) \dfrac{a}{2}  - b =  - 1 \\  =  > a - 2b =  - 2 \\ \\ (2)a +  \dfrac{b}{2}  = 8 \\  =  > 2a + b = 16

Multiplying eq (2) with 2

it becomes

(2)4a + 2b = 32

(1)+(2)

 =  >  a - 2b + 4a + 2b =  - 2 + 32 \\  \\  =  > 5a = 30\\  \\  =  > a =  \dfrac{30}{5} = 6

but \: a =  \dfrac{1}{x}  \\  \boxed{ \sf \: x =  \dfrac{1}{6} }

Substituting the value of a in (1)

a - 2b =  - 2 \\  \\  =  > 6- 2b  =  - 2 \\  \\  =  > b =  \dfrac{8}{2}  =4\\  \\ but \: b =  \dfrac{1}{y}

 \boxed {\sf \: y =  \dfrac{1}{4} }

Therefore the values of x and y are obtained

Answered by Anonymous
5

SOLUTION:-

Given:

Linear equation:

1/2x - 1/y = -1

1/x +1/2y = 8

Assume 1/x be R & 1/y be M.

Now,

 =  >  \frac{R}{2}  - M =  - 1...........(1) \\  \\  =  > R +  \frac{M}{2} = 8..............(2)

From equation (1), we get;

 =  >  \frac{R}{2}  - M =  - 1 \\  \\  =  > R - 2M =  - 2 \\  \\  =  > R =  - 2 + 2M..................(3)

Putting the value of R in equation (2), we get;

 =  >  - 2 + 2M +  \frac{M}{2}  = 8 \\  \\  =  >  - 4 + 4M + M = 16 \\  \\  =  >  - 4 + 5M= 16 \\  \\  =  > 5M = 16 + 4 \\  \\  =  > 5M = 20 \\  \\  =  > M =  \frac{20}{5}  \\  \\  =  > M = 4

Also,

Putting the value of M in equation (3), we get;

=) R = -2 + 2(4)

=) R= -2 + 8

=) R= 6

Now,

 \frac{1}{x}  = R \\  \\  =  >  \frac{1}{x}  = 6 \\  \\  =  > x =  \frac{1}{6}

&

 \frac{1}{y}  = M \\  \\  =  >  \frac{1}{y} = 4 \\  \\  =  > y =  \frac{1}{4}

Hope it helps ☺️

Similar questions