Math, asked by himesh8286, 4 months ago

solve the pair of linear eqautio graphically x-y+1=0 and 2x+2y-12=0​

Answers

Answered by Flaunt
24

Given

We have given two pair of linear equations

x-y+1=0 & 2x+2y-12=0

To find

We have to find value of x and y

\sf\huge\bold{\underline{\underline{{Solution}}}}

➙ x-y+1=0

x=y-1

At x

y=0

➙x= -1

At y= 1

➙x= 1-1=0

➙x=0

At y=2

➙x= 2-1=1

➙x=1

Plot points in table

\large \boxed{\begin{tabular}{c|c|c|c}x & -1 & 0 & 1 \\ \cline{1-4} y & 0 & 1 & 2\end{tabular}}

-----------------------------------------------------------

2x+2y-12=0

➙2x+2y=12

Taking 2 common

➙2(x+y)=12

➙x+y=6

x= 6-y

At y=0

➙x=6

At y= 1

➙x= 6-1=5

At y= 2

➙x= 6-2=4

Plot points in table

\large \boxed{\begin{tabular}{c|c|c|c}x & 6 & 5 & 4 \\ \cline{1-4} y & 0 & 1 & 2\end{tabular}}

Note :As this is not visible on app kindly see from web .

From graph 3 we see that the lines intersect at 2 & 4

So,x will be 2 and y will be 4

Hence,the value of x= 2 ,y=4.

Check:

➙2x+2y-12=0

➙2(2)+2(4)-12

➙4+8-12

➙12-12=0

Attachments:
Answered by BRAINLYxKIKI
34

 {\fcolorbox{black}{black}{\orange{Here's\:your\:Answer\:»»»»}}}

\boxed{\sf{ Equation\:(1)\: \longrightarrow \: x - y + 1 \:=\: 0 }}

\boxed{\sf{Equation\:(2)\: \longrightarrow \: 2x + 2y - 12 \:=\: 0}}

 \therefore Equation ( 1 ) becomes =

ㅤㅤㅤ x - y + 1 = 0

ㅤㅤㅤ x + 1 = 0 + y

ㅤㅤㅤ x = y - 1

Let ,

ㅤㅤㅤy = 1

° x = y - 1

ㅤㅤ x = 1 - 1

ㅤㅤ x = 0

Again Let ,

ㅤㅤy = 3

° x = y - 1

ㅤㅤ x = 3 - 1

ㅤㅤ x = 2

\boxed{\sf{\therefore \:Coordinates\: of \: x - y + 1 \:=\: 0 \: are \: ( 0 , 1 ) \: and \: ( 2 , 3 )}}

Now ,

ㅤㅤㅤ Equation ( 2 ) becomes =

ㅤㅤㅤ 2x + 2y = 12

ㅤㅤㅤ 2x = 12 - 2y

ㅤㅤㅤ x = \sf{\dfrac{ 12 - 2y }{2}}

Let ,

ㅤㅤㅤy = 1

° x = \sf{\dfrac{ 12 - 2y }{2}}

ㅤㅤ x = \sf{\dfrac{ 12 - 2 × 1 }{2}}

ㅤㅤ x = \sf{\dfrac{ 12 - 2 }{2}}

ㅤㅤ x = \sf{\dfrac{ 10 }{2}}

ㅤㅤ x = 5

Again Let ,

ㅤㅤㅤy = 2

° x = \sf{\dfrac{ 12 - 2y }{2}}

ㅤㅤ x = \sf{\dfrac{ 12 - 2 × 2 }{2}}

ㅤㅤ x = \sf{\dfrac{ 12 - 4 }{2}}

ㅤㅤ x = \sf{\dfrac{ 8 }{2}}

ㅤㅤ x = 4

\boxed{\sf{\therefore \:Coordinates\: of \: 2x + 2y - 12 \:=\: 0 \: are \: ( 5 , 1 ) \: and \: ( 4 , 2 )}}

Graph is in the attachment*

 \boxed{\text{Note* Slide to view full answer }}

ㅤㅤㅤ

ㅤㅤㅤ ʙʀɪɴʟʏ×ɪɪ

Attachments:
Similar questions