solve the pair of linear equation
3/root x + 4/root y = 2, 5/root x + 7/root y = 41/12
Answers
Answer:
x+√y=7
√x+y=11
from eq 1...
√y=7-x
y=(7-x)^2
from eq 2...
√x=11-y
substitute (7-x)^2 for y
√x=11-(7-x)^2
square both sides
x=121-22(7-x)^2+(7-x)^4
(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=
x^4-28x^3+294x^2-1372x+2401
x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
0=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
x^4-28x^3+272x^2-1065x+1444=0
from the rational root theorem, possible roots are factors of 1444
4 is a factor of 1444 and a root of the equation...
256-1792+4352-4260+1444=0
-1536+4352-4260+1444=0
2816-4260+1444=0
-1444+1444=0
0=0
x=4
x+√y=7
4+√y=7
√y=7-4
√y=3
square both sides
y=9
x=4 and y=9
Answer:
Step-by-step explanation:
3/√x + 4/√y = 2
5/√x + 7/√y = 41/12
15√x + 21√y = 41/4
-15√x - 20√y = -10
-------------------------------------
1/√y = 1/4
y = 16
3/√x + 4/(4) = 2
3/√x + 1 = 2
3/√x = 1
√x = 3
x = 9