CBSE BOARD X, asked by harshith4914, 1 year ago

solve the pair of linear equation by elimination method x/a+y/b=a+b;x/a square+y/b square=2

Answers

Answered by AnubhavAryan33442
45
Answer.

Given (x/a) + (y/b) = a + b
Multiply by (1/a) both sides, we get
(x/a2) + (y/ab) = 1 + (b/a) → (1)
Given other linear equation as (x/a2) + (y/b2) = 2  → (2)
Subtract (2) from (1), we get
(x/a2) + (y/ab) = 1 + (b/a)
(x/a2) + (y/b2) = 2 
----------------------------------
(y/ab) − (y/b2) = (b/a) − 1
⇒ y[(b − a)/ab2] = (b − a)/a
∴ y = b2
Put y = b2 in (x/a2) + (y/b2) = 2 
⇒ (x/a2) + (b2/b2) = 2 
⇒ (x/a2) + 1 = 2 
⇒ (x/a2)  = 1
∴ x = a2

Answered by hukam0685
0

Explanation:

Given:

 \frac{x}{a}  +  \frac{y}{b}  = a + b \:  \:  \: ...eq1 \\  \\  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} }  = 2 \:  \:  \: ...eq2 \\

To find: Value of x and y.

Solution:

Step 1: Multiply eq1 by 1/a and subtract both equations

 \frac{x}{ {a}^{2} }  +  \frac{y}{ab}  =  \frac{1}{a} (a + b) \\  \\ or \\  \\ \frac{x}{ {a}^{2} }  +  \frac{y}{ab} = 1 +  \frac{b}{a}   \\  \\  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} } = 2 \\ ( - ) \:  \:  \:  \: ( - ) \:  \:  \: ( - ) \\  -  -  -  -  -  -  -  \\  \frac{y}{ab}  -  \frac{y}{ {b}^{2} }  = 1 +  \frac{b}{a}  - 2 \\   \\ or \\  \\ \frac{y}{b} ( \frac{1}{a}  -  \frac{1}{b} ) =  \frac{b}{a}  - 1 \\

Take LCM and solve

 \frac{y}{b} ( \frac{b - a}{ab} ) =  \frac{b - a}{a}  \\  \\  \frac{y}{b} ( \frac{ \cancel{ b - a}}{ \cancel ab} ) =  \frac{ \cancel{b - a}}{\cancel a} \\  \\ \frac{y}{b} ( \frac{1}{b} ) = 1

cross multiply,remain y in LHS

 \frac{y}{ {b}^{2} }  = 1 \\  \\ y =  {b}^{2}  \\  \\

Step 2: Put the value of y in eq2

\frac{x}{ {a}^{2} }  +  \frac{ {b}^{2} }{ {b}^{2} }  = 2 \\  \\ \frac{x}{ {a}^{2} }  +  1  = 2 \\  \\ \frac{x}{ {a}^{2} }   = 2 - 1 \\  \\ \frac{x}{ {a}^{2} }   = 1 \\  \\ x =  {a}^{2}  \\  \\

Final answer:

\bold{\red{x =  {a}^{2}}} \\  \\ \bold{\red{y =  {b}^{2} }} \\  \\

Hope it helps you.

To learn more on brainly:

10/x+y+2/x-y=4;15x+y-5x-y=-2

https://brainly.in/question/10711299

Similar questions