Math, asked by asuhanaseher, 4 months ago

Solve the pair of linear equations 2 + 3 = 11 , 2 − 4 = −24 by

Elimination method​

Answers

Answered by Anonymous
5

\small\sf\underline{\green{Answer:-}}

\small\bf\underline{\bold{Given\:Equations\:are:-}}

2x+3y=11−−−−(1)

2x−4y=−24−−−−(2)

Form:- (1)

2x+3y=11

⇒2x=11−3y

⇒x=

2

11−3y

−−−(3)

\small\star\;{\underline{\underline{\bf{\pink{\;substituting\;  x \;in :-}}}}}

\small{\red{2x−4y=−24 }}

\small{\red{⇒2( }}

2

\small{\red{11−3y}}

\small{\red{)−4y=−24}}

\small{\red{⇒11−3y−4y=−24}}

\small{\red{⇒11−7y=−24}}

\small{\red{⇒7y=35}}

\small{\red{⇒y=35/7}}

\small{\red{⇒y=5.}}

\small{\red{putting\: y \:= 5\: in\: (3) }}

\small{\red{x= 2}}

11−3(5)

⇒x=

2

11−15

⇒x=−4/2

∴x=−2.

Hence x = -2 and y = 5 is the solution of the

equation.

Now, we have to find m

y=mx+3 ∴m=−1

5=3(−2)+3

5−3=−2m⇒−2m=2

⇒m=−2/x=−1

Similar questions