Math, asked by suni155, 1 month ago

Solve the pair of linear equations 9x -4y+1=0, 7x –6y-5=0using crossmultiplication method.

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:9x - 4y + 1 = 0

and

\rm :\longmapsto\:7x - 6y - 5 = 0

can be rewritten as

\rm :\longmapsto\:9x - 4y =  - 1

and

\rm :\longmapsto\:7x - 6y = 5

Using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 4 & \sf  - 1 & \sf 9 & \sf  - 4\\ \\ \sf  - 6 & \sf 5 & \sf 7 & \sf  - 6\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 20 - 6}  = \dfrac{y}{ - 7 - 45}  = \dfrac{ - 1}{ - 54 - ( - 28)}

\rm :\longmapsto\:\dfrac{x}{ - 26}  = \dfrac{y}{ - 52}  = \dfrac{ - 1}{ - 54  + 28}

\rm :\longmapsto\:\dfrac{x}{ - 26}  = \dfrac{y}{ - 52}  = \dfrac{ - 1}{ - 26}

\rm :\longmapsto\:\dfrac{x}{ - 26}  = \dfrac{y}{ - 52}  = \dfrac{  1}{ 26}

On taking first and third member, we get

\rm :\longmapsto\:\dfrac{x}{ - 26} = \dfrac{  1}{ 26}

\bf\implies \:x =  - 1

Now,

On taking second and third member, we get

\rm :\longmapsto\: \dfrac{y}{ - 52}  = \dfrac{  1}{ 26}

\rm :\longmapsto\:y =  - \dfrac{52}{26}

\bf\implies \:y =  -  \: 2

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Solution \: is \: \begin{cases} &\bf{x \:  =  \:  -  \: 1} \\ &\bf{y \:  =  \:  -  \: 2} \end{cases}\end{gathered}\end{gathered}

Verification :-

Consider Equation (1),

\rm :\longmapsto\:9x - 4y + 1 = 0

On substituting the values of x and y, we get

\rm :\longmapsto\:9( - 1) - 4( - 2) + 1 = 0

\rm :\longmapsto\: - 9 + 8 + 1 = 0

\rm :\longmapsto\:0 = 0

Hence, Verified

Consider Equation (2),

\rm :\longmapsto\:7x - 6y - 5 = 0

On substituting the values of x and y, we get

\rm :\longmapsto\:7( - 1) - 6( - 2) - 5 = 0

\rm :\longmapsto\: - 7 + 12 - 5 = 0

\rm :\longmapsto\:12 - 12 = 0

\rm :\longmapsto\:0 = 0

Hence, Verified

Answered by oOosnowflakeoOo
2

this

is

correct

answer

.

Attachments:
Similar questions