Solve the pair of linear equations
(a+b)x + (a-b)y = a^2+b^2
(a-b)x + (a+b)y = a^2+b^2
Answers
Answered by
0
Step-by-step explanation:
(a−b)x+(a+b)y=a
2
−2ab−b
2
----- (i)
(a+b)(x+y)=a
2
+b
2
-------- (ii)
Subtracting eq (i) by eq (ii), we get.
⇒(a−b)x−(a+b)x=a
2
−2ab−b
2
−a
2
−b
2
⇒−2bx=−2bx(a+b)
⇒x=(a+b)
∴(a+b)(a+b+y)=a
2
+b
2
⇒(a+b)
2
+(a+b)y=a
2
+b
2
⇒y=
a+b
−2ab
Similar questions