solve the pair of linear equations by only elimination method 2x+y=5
3x+2y=8
Answers
Answer :- Here we have, 2x+y=5→(1)
Here we have, 2x+y=5→(1)3x+2y=8→(2)
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=10
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So,
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So, x=1
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So, x=1
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So, x=1
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So, x=1 (x,y)=(2,1)
Here we have, 2x+y=5→(1)3x+2y=8→(2)Let Multiply eq n (1) by 2.So, 4x+2y=104x+2y=8________________x=2 In the eq n (1), put x=2,4+y=5So, x=1 (x,y)=(2,1)
Steps For Elimination Method
Step 1: Firstly, multiply both the given equations by some suitable non-zero constants to make the coefficients of any one of the variables (either x or y) numerically equal.
Step 2: After that, add or subtract one equation from the other in such a way that one variable gets eliminated. Now, if you get an equation in one variable, go to Step 3. Else;
If we obtain a true statement including no variable, then the original pair of equations has infinitely many solutions.
If we obtain a false statement including no variable, then the original pair of equations has no solution, i.e., it is inconsistent.
Step 3: Solve the equation in one variable (x or y) to get its value.
Step 4: Substitute this value in any of the given equations to get the value of another variable
Let us understand with a general case.
General Case: Taking a general case of two linear equations:
ax + by = c………(1)
px + qy = r……….(2)
Multiplying eq (1) by p, we get,
apx + bpy = cp ………..(3)
Similarly, on multiplying eq (2) with ‘a’, we get:
apx + aqy = ar………….(4)
As per the elimination method, the coefficient of x obtained in equation (3) and equation (4) is same.
In order to remove the variable x and get a linear equation in one variable, equation (4) is subtracted from equation (3). We get:
apx + bpy – apx – aqy = cp – ar
bpy – aqy = cp – ar
(bp – aq) y = cp – ar
y = (cp-ar)/(bp-aq)
Also, from equation (1) we get,
ax = c – by
Elimination Method to Solve Linear Equations in Two Variables