Math, asked by jamwalshaurya007, 30 days ago

Solve the pair of linear equations by substitution method.

Attachments:

Answers

Answered by BrainlyTwinklingstar
2

Answer

\sf \dashrightarrow 9x + 3y = 25 \: \: --- (i)

\sf \dashrightarrow 14x + 13y = 95 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 9x + 3y = 25

\sf \dashrightarrow 9x = 25 - 3y

\sf \dashrightarrow x = \dfrac{25 - 3y}{9}

Now, let's find the value of y by second equation.

\sf \dashrightarrow 14x + 13y = 95

\sf \dashrightarrow 14 \bigg( \dfrac{25 - 3y}{9} \bigg) + 13y = 95

\sf \dashrightarrow \dfrac{350 - 42y}{9} + 13y = 95

\sf \dashrightarrow \dfrac{350 - 42y + 117y}{9} = 95

\sf \dashrightarrow \dfrac{350 + 75y}{9} = 95

\sf \dashrightarrow 350 + 75y = 95 \times 9

\sf \dashrightarrow 350 + 75y = 855

\sf \dashrightarrow 75y = 885 - 350

\sf \dashrightarrow 75y = 505

\sf \dashrightarrow y = \dfrac{505}{75}

\sf \dashrightarrow y = \dfrac{101}{15}

Now, let's find the value of x by first equation.

\sf \dashrightarrow 9x + 3y = 25

\sf \dashrightarrow 9x + 3 \bigg( \dfrac{101}{15} \bigg) = 25

\sf \dashrightarrow 9x + \dfrac{101}{3} = 25

\sf \dashrightarrow 9x = 25 - \dfrac{101}{3}

\sf \dashrightarrow 9x = \dfrac{75 - 101}{3}

\sf \dashrightarrow 9x = \dfrac{-26}{3}

\sf \dashrightarrow x = \dfrac{\dfrac{-26}{3}}{9}

\sf \dashrightarrow x = \dfrac{-26}{3} \times \dfrac{1}{9}

\sf \dashrightarrow x = \dfrac{-26}{27}

Hence, the values of x and y are \sf \dfrac{-26}{27} and \sf \dfrac{101}{15} respectively.

Similar questions