solve the pair of linear equations by using substitution method
Answers
s - t = 3
s = 3 + t. -----------------------(i)
now,also
s/3 + t/2 = 6
(3 + t)/3 + t/2 = 6
3/3 + t/3 + t/2 = 6
1 + (2t + 3t)/6 = 6
5t/6 = 5
5t = 5*6
t = 6
now, putting value of t = 6 in equation (i)
s = 6 + 3
s = 9
Question:
Solve the pair of linear equations by using substitution method.
s - t = 3
( s / 3 ) + ( t / 2 ) = 6
Answer:
The solution of the given equations is
( s, t ) = ( 9, 6 ).
Step-by-step-explanation:
The given linear equations are
s - t = 3
⇒ s = 3 + t
⇒ s = t + 3 - - - ( 1 ) &
( s / 3 ) + ( t / 2 ) = 6
⇒ ( 2s + 3t ) / ( 3 * 2 ) = 6
⇒ ( 2s + 3t ) / 6 = 6
⇒ 2s + 3t = 6 * 6
⇒ 2s + 3t = 36
⇒ 2 ( t + 3 ) + 3t = 36 - - - [ From ( 1 ) ]
⇒ 2t + 6 + 3t = 36
⇒ 2t + 3t = 36 - 6
⇒ 5t = 30
⇒ t = 30 / 5
⇒ t = 6
By substituting t = 6 in equation ( 1 ),
s = t + 3 - - - ( 1 )
⇒ s = 6 + 3
⇒ s = 9
∴ The solution of the given equations is
( s, t ) = ( 9, 6 ).