Math, asked by daris52, 1 month ago

solve the pair of linear equations. x/a+y/b=a+b and x/a^2+y/b^2=2 (a,b not equal to 0)​

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given:

 \frac{x}{a}  +  \frac{y}{b}  = a + b \:  \:  \: ...eq1 \\  \\  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} }  = 2 \:  \:  \: ...eq2 \\

To find: Value of x and y.

Solution:

Step 1: Multiply eq1 by 1/a and subtract both equations

 \frac{x}{ {a}^{2} }  +  \frac{y}{ab}  =  \frac{1}{a} (a + b) \\  \\ or \\  \\ \frac{x}{ {a}^{2} }  +  \frac{y}{ab} = 1 +  \frac{b}{a}   \\  \\  \frac{x}{ {a}^{2} }  +  \frac{y}{ {b}^{2} } = 2 \\ ( - ) \:  \:  \:  \: ( - ) \:  \:  \: ( - ) \\  -  -  -  -  -  -  -  \\  \frac{y}{ab}  -  \frac{y}{ {b}^{2} }  = 1 +  \frac{b}{a}  - 2 \\   \\

Take y/b common

 \frac{y}{b}\left ( \frac{1}{a}  -  \frac{1}{b}\right ) =  \frac{b}{a}  - 1 \\

Take LCM and solve

 \frac{y}{b} \left( \frac{b - a}{ab} \right) =  \frac{b - a}{a}  \\  \\  \frac{y}{b} \left( \frac{ \cancel{ \red{b - a}}}{ \cancel \red{a}b}\right ) =  \frac{ \cancel{\red{b - a}}}{\cancel \red{a}} \\  \\ \frac{y}{b}\left ( \frac{1}{b}\right ) = 1

cross multiply,remain y in LHS

 \frac{y}{ {b}^{2} }  = 1 \\  \\ \bold{\green{y =  {b}^{2}}}  \\  \\

Step 2: Put the value of y in eq2

\frac{x}{ {a}^{2} }  +  \frac{ {b}^{2} }{ {b}^{2} }  = 2 \\  \\ \frac{x}{ {a}^{2} }  +  1  = 2 \\  \\ \frac{x}{ {a}^{2} }   = 2 - 1 \\  \\ \frac{x}{ {a}^{2} }   = 1 \\  \\\bold{\green{ x =  {a}^{2}  }}\\  \\

Final answer:

\bold{\red{x =  {a}^{2}}} \\  \\ \bold{\red{y =  {b}^{2} }} \\  \\

Hope it helps you.

To learn more on brainly:

1) 10/x+y+2/x-y=4;15x+y-5x-y=-2

https://brainly.in/question/10711299

2) find x and y for the following equations.

https://brainly.in/question/43906292

Similar questions